**Author**: Alessandro Bettini

**Publisher:** Springer

**ISBN:** 3319483293

**Category:** Science

**Page:** 361

**View:** 2863

Skip to content
# Free eBooks PDF

## A Course in Classical Physics 4 - Waves and Light

This fourth volume of a four-volume textbook covers the oscillations of systems with one or more degrees of freedom; the concept of waves, focusing on light and sound; phase and group velocities, their physical meaning, and their measurement; diffraction and interference of light; polarization phenomena; and the formation of images in the eye and in optical instruments. The textbook as a whole covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, and is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in quantum mechanics and atomic, solid state, nuclear, and particle physics are included. The textbook offers an ideal resource for physics students, lecturers and, last but not least, all those seeking a deeper understanding of the experimental basics of physics.
## A Course in Classical Physics 3 — Electromagnetism

Focusing on electromagnetism, this third volume of a four-volume textbook covers the electric field under static conditions, constant electric currents and their laws, the magnetic field in a vacuum, electromagnetic induction, magnetic energy under static conditions, the magnetic properties of matter, and the unified description of electromagnetic phenomena provided by Maxwell’s equations. The four-volume textbook as a whole covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, and is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in quantum mechanics and atomic, solid state, nuclear, and particle physics are included. The textbook offers an ideal resource for physics students, lecturers and, last but not least, all those seeking a deeper understanding of the experimental basics of physics.
## A Course in Classical Physics 1—Mechanics

This first volume covers the mechanics of point particles, gravitation, extended systems (starting from the two-body system), the basic concepts of relativistic mechanics and the mechanics of rigid bodies and fluids. It is part of a four-volume textbook, which covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, and is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Writings by the founders of classical mechanics, G. Galilei and I. Newton, are reproduced, encouraging students to consult them. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in modern physics are included. Each chapter begins with an introduction that briefly describes the subjects to be discussed and ends with a summary of the main results. A number of “Questions” are included to help readers check their level of understanding. The textbook offers an ideal resource for physics students, lecturers and, last but not least, all those seeking a deeper understanding of the experimental basics of physics.
## A Course in Classical Physics 2—Fluids and Thermodynamics

This second volume covers the mechanics of fluids, the principles of thermodynamics and their applications (without reference to the microscopic structure of systems), and the microscopic interpretation of thermodynamics. It is part of a four-volume textbook, which covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in quantum mechanics and atomic, solid state, nuclear, and particle physics are included. Each chapter begins with an introduction that briefly describes the subjects to be discussed and ends with a summary of the main results. A number of “Questions” are included to help readers check their level of understanding. The textbook offers an ideal resource for physics students, lecturers and, last but not least, all those seeking a deeper understanding of the experimental basics of physics.
## Fluid- und Thermodynamik

## Moderne Physik

Immer mehr deutsche Hochschulen folgen dem amerikanischen Vorbild und bieten Einführungskurse zur Modernen Physik an. Diese Kurse vermitteln die spannenden Erkenntnisse der Physik der letzten 100 Jahre, die zu bahnbrechenden Veränderungen geführt haben. Das Standardwerk zu diesen Kursen ist "Modern Physics" von Paul A. Tipler, Autor des berühmten Werkes "Physik", und Ralph A. Llewellyn. Die Autoren zeigen, dass man ein tief gehendes Verständnis der Modernen Physik vermitteln kann, ohne einen schwerfälligen mathematischen Apparat bemühen zu müssen. Mit über 500 Abbildungen, Zitaten berühmter Physiker sowie mit ca. 700 sorgfältig ausgewählten Übungsaufgaben und über das Internet zugänglichen Ergänzungen wurde "Modern Physics" in den USA zu einem der beliebtesten Lehrbücher zu diesem Thema.
## Problems in Classical Electromagnetism

This book contains 157 problems in classical electromagnetism, most of them new and original compared to those found in other textbooks. Each problem is presented with a title in order to highlight its inspiration in different areas of physics or technology, so that the book is also a survey of historical discoveries and applications of classical electromagnetism. The solutions are complete and include detailed discussions, which take into account typical questions and mistakes by the students. Without unnecessary mathematical complexity, the problems and related discussions introduce the student to advanced concepts such as unipolar and homopolar motors, magnetic monopoles, radiation pressure, angular momentum of light, bulk and surface plasmons, radiation friction, as well as to tricky concepts and ostensible ambiguities or paradoxes related to the classical theory of the electromagnetic field. With this approach the book is both a teaching tool for undergraduates in physics, mathematics and electric engineering, and a reference for students wishing to work in optics, material science, electronics, plasma physics.
## From Aristotle to Schrödinger

From Aristotle to Schrödinger: The Curiosity of Physics offers a novel introduction to the topics commonly encountered in the first two years of an undergraduate physics course, including classical mechanics, thermodynamics and statistical mechanics, electromagnetism, relativity, quantum mechanics, atomic and molecular physics, and astrophysics. The book presents physics as it evolved historically; it covers in considerable depth the development of the subject from ancient Greece to the present day. Though the emphasis is on the observations, experiments, theories, and applications of physics, there are additionally short sections on the life and times of the main protagonists of physics. This book grew out of the author's long experience in giving undergraduate and graduate courses in classical physics and in quantum mechanics and its elementary applications. Although meant primarily for the student and teacher of physics, it will be of interest to other scientists and to historians of science, and to those who wish to know something about physics, how it started, and how it developed to its present day magnificence and sophistication.
## Halliday Physik

Noch bessere Didaktik, noch mehr Beispiele, noch mehr Aufgaben, noch mehr Spaß - die Neuauflage des "Halliday" erfüllt alle Wünsche an ein zeitgemäßes Lehrbuch der Physik! Das Lehrbuch bietet den gesamten Stoff der einführenden Experimentalphysik-Vorlesungen für Hauptfachstudenten. Mehrere Kapitel wurden im Sinne der besseren Verständlichkeit komplett umgeschrieben, etwa zum Gauß'schen Satz und zum elektrischen Potential. Die Kapitel zur Quantenmechanik sind deutlich umfangreicher und behandeln nun die Schrödinger-Gleichung ausführlicher bis hin zur Reflexion von Materiewellen an Potentialstufen und der Schwarzkörperstrahlung. Doch für die dritte Auflage wurden die Kapitel nicht nur überarbeitet, sondern didaktisch neu strukturiert: die Lerninhalte sind nun in Modulen organisiert, wobei jede Einheit die Lernziele explizit aufführt und die Schlüsselkonzepte zusammenfasst. So können Studentinnen und Studenten zielgerichtet lernen und den Lernerfolg nach der Lektüre selbst überprüfen. Das selbstständige Lernen wird unterstützt durch rund 300 im Text durchgerechnete Beispiele, 250 Verständnis-Checks, mehr als 650 konzeptionelle Fragen sowie mehr als 2500 Aufgaben unterschiedlichen Schwierigkeitsgrads.
## Classical Mechanics, Second Edition

Classical Mechanics, Second Edition presents a complete account of the classical mechanics of particles and systems for physics students at the advanced undergraduate level. The book evolved from a set of lecture notes for a course on the subject taught by the author at California State University, Stanislaus, for many years. It assumes the reader has been exposed to a course in calculus and a calculus-based general physics course. However, no prior knowledge of differential equations is required. Differential equations and new mathematical methods are developed in the text as the occasion demands. The book begins by describing fundamental concepts, such as velocity and acceleration, upon which subsequent chapters build. The second edition has been updated with two new sections added to the chapter on Hamiltonian formulations, and the chapter on collisions and scattering has been rewritten. The book also contains three new chapters covering Newtonian gravity, the Hamilton-Jacobi theory of dynamics, and an introduction to Lagrangian and Hamiltonian formulations for continuous systems and classical fields. To help students develop more familiarity with Lagrangian and Hamiltonian formulations, these essential methods are introduced relatively early in the text. The topics discussed emphasize a modern perspective, with special note given to concepts that were instrumental in the development of modern physics, for example, the relationship between symmetries and the laws of conservation. Applications to other branches of physics are also included wherever possible. The author provides detailed mathematical manipulations, while limiting the inclusion of the more lengthy and tedious ones. Each chapter contains homework problems of varying degrees of difficulty to enhance understanding of the material in the text. This edition also contains four new appendices on D'Alembert's principle and Lagrange's equations, derivation of Hamilton’s principle, Noether’s theorem, and conic sections.
## Grundlagen der Photonik

Schon die erste Auflage des englischen Lehrbuchs 'Fundamentals of Photonics' zeichnete sich durch seine ausgewogene Mischung von Theorie und Praxis aus, und deckte in detaillierter Darstellung die grundlegenden Theorien des Lichts ab. Es umfasste sowohl die Themen Strahlenoptik, Wellenoptik, elektromagnetische Optik, Photonenoptik, sowie die Wechselwirkung von Licht und Materie, als auch die Theorie der optischen Eigenschaften von Halbleitern. Die Photonik-Technologie hat eine rasante Entwicklung genommen seit der Publikation der ersten Ausgabe von 'Fundamentals of Photonics' vor 15 Jahren. Die nun vorliegende Zweite Auflage des Marksteins auf dem Gebiet der Photonik trägt mit zwei neuen und zusätzlichen Kapiteln den neuesten technologischen Fortschritten Rechnung: Photonische Kristalle sowie Ultrakurzpuls-Optik. Zudem wurden alle Kapitel gründlich überarbeitet und viele Abschnitte hinzugefügt, so z.B. über Laguerre-Gauss Strahlen, die Sellmeier-Gleichung, Photonenkristall-Wellenleiter, photonische Kristallfasern, Mikrosphären-Resonatoren, Optische Kohärenz Tomographie, Bahndrehimpuls des Photons, Bohrsche Theorie, Raman-Verstärker, rauscharme Avalanche-Photodioden, Abstimmkurven und Dispersions-Management.
## Elektrodynamik

## Optics and Lasers

The field of optics has changed greatly in the past dozen years or so. Partly because of the applied or engineering nature of much of modern optics, there is need for a practical text that surveys the entire field. Such a book should not be a classical-optics text, but, rather, it should be strong on principles, applications and instrumentation, on lasers, holography and coherent light. On the other hand, it should concern itself relatively little with such admittedly interesting phenomena as the formation of the rainbow or the precise deter mination of the speed of light. My purpose, therefore, has been to write an up-to-date textbook that surveys applied or engineering optics, including lasers and certain other areas that might be called modern optics. I have attempted to treat each topic in sufficient depth to give it considerable engineering value, while keeping it as free of unnecessary mathematical detail as possible. Because I have surveyed applied optics in a very general way (including much more than I would attempt to incorporate into any single college course), this book should be a useful handbook for the practicing physicist or engineer who works from time to time with optics. Any of the material is appropriate to an introductory undergraduate course in optics; the work as a whole will be useful to the graduate student or applied scientist with scant background in optics.
## Mechanik

## The University of Virginia Record

## Dissipative Solitons: From Optics to Biology and Medicine

The dissipative soliton concept is a fundamental extension of the concept of solitons in conservative and integrable systems. It includes ideas from three major sources, namely standard soliton theory developed since the 1960s; nonlinear dynamics theory; and Prigogine's ideas of systems far from equilibrium. These three sources also correspond to the three component parts of this novel paradigm. This book explains the above principles in detail and gives the reader various examples.
## Classical Dynamics and Its Quantum Analogues

The short Heroic Age of physics that started in 1925 was one of the rare occasions when a deep consideration of the question: What does physics really say? was necessary in carrying out numerical calculations. In many parts of microphysics the calculations have now become relatively straightforward if not easy, but most physicists seem to agree that some questions of principle remain to be resolved, even if they do not think it is very important to do so. This situation has affected the way people think and write about quantum mechanics, a gingerly approach to fundamentals and a tendency to emphasize what fifty years ago was new in the new theory at the expense of continuity with what came before it. Nowadays those who look into the subject are more likely to be struck by unexpected similarities between quantum and classical mechanics than by dramatic contrasts they had been led to expect. It is often said that the hardest part of understanding quantum mechanics is to understand that there is nothing to understand; all the same, to think quantum mechanically it helps to have firm mental connections with classical physics and to know exactly what these connections do and do not imply. This book originated more than a decade ago as informal lecture notes [OP, prepared for use in a course taught from time to time to advanced undergraduates at Williams College.

Just another PDF Download site

Science

Science

Science

Science

Science

Physics

Science

Science

Science

Science

Optoelectronics

Electrodynamics

Science

Science

Biography & Autobiography

Technology & Engineering

Science