A New Approach to Differential Geometry using Clifford's Geometric Algebra

Author: John Snygg

Publisher: Springer Science & Business Media

ISBN: 0817682821

Category: Mathematics

Page: 465

View: 3261

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.

An Introduction to Clifford Algebras and Spinors

Author: Roldao Da Rocha, Jr.

Publisher: Oxford University Press

ISBN: 0198782926


Page: 256

View: 8145

This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and is accessible to both students and researchers. It emphasizes the formal character and the deep algebraic and geometric completeness, and merges them with the physical applications. The style is clear and precise, but not pedantic. The sole pre-requisites is a course in Linear Algebra which most students of Physics, Mathematics or Engineering will have covered as part of their undergraduate studies.

Partielle Differentialgleichungen der Geometrie und der Physik 2

Funktionalanalytische Lösungsmethoden

Author: Friedrich Sauvigny

Publisher: Springer-Verlag

ISBN: 3540275401

Category: Mathematics

Page: 350

View: 7775

Das zweibändige Lehrbuch behandelt das Gebiet der partiellen Differentialgleichungen umfassend und anschaulich. Der Autor stellt in Band 2 funktionalanalytische Lösungsmethoden vor und erläutert u. a. die Lösbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, die Schaudersche Theorie linearer elliptischer Differentialgleichungen sowie schwache Lösungen elliptischer Differentialgleichungen.

Light after Dark II

The Large and the Small

Author: Charles Francis

Publisher: Troubador Publishing Ltd

ISBN: 1785897624

Category: Science

Page: 200

View: 4779

In Light after Dark II: The Large and the Small, Dr Francis explores the physics and the philosophy pertinent to the conceptual foundations of modern physical theory, avoiding equations and with sufficient explanation to be accessible to general readers. A comprehensive rationale is described for the theories of Einstein, Heisenberg, Dirac, von Neumann, Feynman, and others. Spacetime curvature is elucidated. The meanings of Schrödinger’s cat, Bell’s theorem and Bertlmann’s socks are explained. Implications for determinism, free will, and the nature of space and time are examined.This is a book of well-established but up-to-date science, focussing on the concepts behind the mathematics of modern physical theory and covering the special and general theories of relativity, relativistic quantum mechanics, and particle physics. It describes both what we know and how we know it, and explains the thought that underlies modern physics. It includes explanation as to how infinities and other undefined quantities can be avoided. Contrary to widespread belief, there are no unresolved paradoxes or inconsistencies in either relativity or quantum mechanics (either separately or together), but understanding them requires a willingness to let go of common misconceptions concerning the character of space, time, and spacetime. Light after Dark II will appeal to students of physics and philosophy and anyone interested in the workings of reality.


A Modern Geometric Approach

Author: William Baylis

Publisher: Springer Science & Business Media

ISBN: 9780817640255

Category: Science

Page: 380

View: 1150

The emphasis in this text is on classical electromagnetic theory and electrodynamics, that is, dynamical solutions to the Lorentz-force and Maxwell's equations. The natural appearance of the Minkowski spacetime metric in the paravector space of Clifford's geometric algebra is used to formulate a covariant treatment in special relativity that seamlessly connects spacetime concepts to the spatial vector treatments common in undergraduate texts. Baylis' geometrical interpretation, using such powerful tools as spinors and projectors, essentially allows a component-free notation and avoids the clutter of indices required in tensorial treatments. The exposition is clear and progresses systematically - from a discussion of electromagnetic units and an explanation of how the SI system can be readily converted to the Gaussian or natural Heaviside-Lorentz systems, to an introduction of geometric algebra and the paravector model of spacetime, and finally, special relativity. Other topics include Maxwell's equation(s), the Lorentz-force law, the Fresnel equations, electromagnetic waves and polarization, wave guides, radiation from accelerating charges and time-dependent currents, the Liénard-Wiechert potentials, and radiation reaction, all of which benefit from the modern relativistic approach. Numerous worked examples and exercises dispersed throughout the text help the reader understand new concepts and facilitate self-study of the material. Each chapter concludes with a set of problems, many with answers. Complete solutions are also available. An excellent feature is the integration of Maple into the text, thereby facilitating difficult calculations. To download accompanying Maple worksheets, please visit

Clifford Algebra to Geometric Calculus

A Unified Language for Mathematics and Physics

Author: David Hestenes,Garret Sobczyk

Publisher: Springer Science & Business Media

ISBN: 9789027725615

Category: Mathematics

Page: 314

View: 9905

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 6165

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Geometric Algebra: An Algebraic System for Computer Games and Animation

Author: John A. Vince

Publisher: Springer Science & Business Media

ISBN: 9781848823792

Category: Computers

Page: 195

View: 7153

Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs. The book includes many worked examples to show how the algebra works in practice and is essential reading for anyone involved in designing 3D geometric algorithms.

Gravitational Dynamics

Author: England) Herstmonceux Conference (36 : 1995 : Cambridge

Publisher: Cambridge University Press

ISBN: 9780521563277

Category: Science

Page: 260

View: 4731

A timely review of all aspects of gravitational dynamics - with chapters by an exceptional array of world authorities.

Distributionen Und Hilbertraumoperatoren

Mathematische Methoden Der Physik

Author: Philippe Blanchard,Erwin Brüning

Publisher: Springer

ISBN: 9783211825075

Category: Science

Page: 375

View: 2484

Das Buch bietet eine Einführung in die zum Studium der Theoretischen Physik notwendigen mathematischen Grundlagen. Der erste Teil des Buches beschäftigt sich mit der Theorie der Distributionen und vermittelt daneben einige Grundbegriffe der linearen Funktionalanalysis. Der zweite Teil baut darauf auf und gibt eine auf das Wesentliche beschränkte Einführung in die Theorie der linearen Operatoren in Hilbert-Räumen. Beide Teile werden von je einer Übersicht begleitet, die die zentralen Ideen und Begriffe knapp erläutert und den Inhalt kurz beschreibt. In den Anhängen werden einige grundlegende Konstruktionen und Konzepte der Funktionalanalysis dargestellt und wichtige Konsequenzen entwickelt.
Technology & Engineering

Geometric Fundamentals of Robotics

Author: J.M. Selig

Publisher: Springer Science & Business Media

ISBN: 0387272747

Category: Technology & Engineering

Page: 398

View: 4881

* Provides an elegant introduction to the geometric concepts that are important to applications in robotics * Includes significant state-of-the art material that reflects important advances, connecting robotics back to mathematical fundamentals in group theory and geometry * An invaluable reference that serves a wide audience of grad students and researchers in mechanical engineering, computer science, and applied mathematics
Automatic theorem proving

A Combination of Geometry Theorem Proving and Nonstandard Analysis, with Application to Newton's Principia

Author: Jacques D Fleuriot

Publisher: N.A


Category: Automatic theorem proving

Page: 135

View: 5623

Abstract: "Sir Isaac Newton's Philosophiæ Naturalis Principia Mathematica (the Principia) was first published in 1687 and set much of the foundations that led to profound changes in modern science. Despite the influence of the work, the elegance of the geometrical techniques used by Newton is little known since the demonstrations of most of the theorems set out in it are usually done using calculus. Newton's reasoning also goes beyond the traditional boundaries of Euclidean geometry with the presence of both motion and infinitesimals. This thesis describes the mechanization of Lemmas and Propositions from the Principia using formal tools developed in the generic theorem prover Isabelle. We discuss the formalization of a geometry theory based on existing methods from automated geometry theorem proving. The theory contains extra geometric notions, including definitions of the ellipse and its tangent, that enable us to deal with the motion of bodies and other physical aspects. We introduce the formalization of a theory of filters and ultrafilters, and the purely definitional construction of the hyperreal numbers of Nonstandard Analysis (NSA). The hyperreals form a proper field extension of the reals that contains new types of numbers including infinitesimals and infinite numbers. By combining notions from NSA and geometry theorem proving, we propose an 'infinitesimal' geometry in which quantities can be infinitely small. This approach then reveals new properties of the geometry that only hold because infinitesimal elements are allowed. We also mechanize some analytic geometry and use it to verify the geometry theories of Isabelle. We then report on the main application of this framework. We discuss the formalization of several results from the Principia and give a detailed case study of one of its most important propositions: the Propositio Kepleriana. An anomaly is revealed in Newton's reasoning through our rigorous mechanization. Finally, we present the formalization of a portion of mathematical analysis using the nonstandard approach. We mechanize both standard and nonstandard definitions of familiar concepts, prove their equivalence, and use nonstandard arguments to provide intuitive yet rigorous proofs of many of their properties."

Der Weg zur Wirklichkeit

Die Teilübersetzung für Seiteneinsteiger

Author: Roger Penrose

Publisher: Spektrum Akademischer Verlag

ISBN: 9783827423412

Category: Science

Page: 357

View: 8265

Der Weg zur Wirklichkeit ist eine Kurzübersetzung des Penrose-Klassikers "The Road to Reality", die aus dem Monumentalwerk für Physik- und Mathematikexperten die allgemeinverständlichen Kapitel für interessierte Laien lesbar macht. Wer ein Faible für die Grundfragen der Wissenschaft, einen Blick für Geometrie, einen Sinn für Zahlen und Neugier für kosmologische Theorien hat, findet in diesem klar und kompetent geschriebenen Buch überraschende und provozierende Ideen. Schulmathematik wie die Bruchrechnung oder der berühmte Pythagorassatz lassen sich auf dem Weg zur Wirklichkeit völlig neu entdecken - im Spannungsfeld zwischen platonischer Mathematik, physikalischer Welt und menschlichem Bewusstsein.

Raum, Zeit, Materie

Author: Hermann Weyl

Publisher: Рипол Классик

ISBN: 5880098028

Category: History

Page: N.A

View: 1371


Dirac-Operatoren in der Riemannschen Geometrie

Mit einem Ausblick auf die Seiberg-Witten-Theorie

Author: Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3322803023

Category: Mathematics

Page: 207

View: 5184

Dieses Buch entstand nach einer einsemestrigen Vorlesung an der Humboldt-Universität Berlin im Studienjahr 1996/ 97 und ist eine Einführung in die Theorie der Spinoren und Dirac-Operatoren über Riemannschen Mannigfaltigkeiten. Vom Leser werden nur die grundlegenden Kenntnisse der Algebra und Geometrie im Umfang von zwei bis drei Jahren eines Mathematik- oder Physikstudiums erwartet. Ein Anhang gibt eine Einführung in das aktuelle Gebiet der Seiberg-Witten-Theorie.

Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik

dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert

Author: Hermann Grassmann

Publisher: N.A


Category: Ausdehnungslehre

Page: 279

View: 3416