**Author**: John Snygg

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Mathematics

**Page:** 465

**View:** 631

Skip to content
# Free eBooks PDF

## A New Approach to Differential Geometry using Clifford's Geometric Algebra

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
## Topological and Statistical Methods for Complex Data

This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013. It features the work of some of the most prominent and recognized leaders in the field who examine challenges as well as detail solutions to the analysis of extreme scale data. The book presents new methods that leverage the mutual strengths of both topological and statistical techniques to support the management, analysis, and visualization of complex data. It covers both theory and application and provides readers with an overview of important key concepts and the latest research trends. Coverage in the book includes multi-variate and/or high-dimensional analysis techniques, feature-based statistical methods, combinatorial algorithms, scalable statistics algorithms, scalar and vector field topology, and multi-scale representations. In addition, the book details algorithms that are broadly applicable and can be used by application scientists to glean insight from a wide range of complex data sets.
## Real Spinorial Groups

This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index. Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students.
## An Introduction to Clifford Algebras and Spinors

This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and is accessible to both students and researchers. It emphasizes the formal character and the deep algebraic and geometric completeness, and merges them with the physical applications. The style is clear and precise, but not pedantic. The sole pre-requisites is a course in Linear Algebra which most students of Physics, Mathematics or Engineering will have covered as part of their undergraduate studies.
## Clifford Algebra to Geometric Calculus

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
## Advances in Analysis and Geometry

## Electrodynamics

The emphasis in this text is on classical electromagnetic theory and electrodynamics, that is, dynamical solutions to the Lorentz-force and Maxwell's equations. The natural appearance of the Minkowski spacetime metric in the paravector space of Clifford's geometric algebra is used to formulate a covariant treatment in special relativity that seamlessly connects spacetime concepts to the spatial vector treatments common in undergraduate texts. Baylis' geometrical interpretation, using such powerful tools as spinors and projectors, essentially allows a component-free notation and avoids the clutter of indices required in tensorial treatments. The exposition is clear and progresses systematically - from a discussion of electromagnetic units and an explanation of how the SI system can be readily converted to the Gaussian or natural Heaviside-Lorentz systems, to an introduction of geometric algebra and the paravector model of spacetime, and finally, special relativity. Other topics include Maxwell's equation(s), the Lorentz-force law, the Fresnel equations, electromagnetic waves and polarization, wave guides, radiation from accelerating charges and time-dependent currents, the Liénard-Wiechert potentials, and radiation reaction, all of which benefit from the modern relativistic approach. Numerous worked examples and exercises dispersed throughout the text help the reader understand new concepts and facilitate self-study of the material. Each chapter concludes with a set of problems, many with answers. Complete solutions are also available. An excellent feature is the integration of Maple into the text, thereby facilitating difficult calculations. To download accompanying Maple worksheets, please visit http://www.cs.uwindsor.ca/users/b/baylis
## A Combination of Geometry Theorem Proving and Nonstandard Analysis, with Application to Newton's Principia

Abstract: "Sir Isaac Newton's Philosophiæ Naturalis Principia Mathematica (the Principia) was first published in 1687 and set much of the foundations that led to profound changes in modern science. Despite the influence of the work, the elegance of the geometrical techniques used by Newton is little known since the demonstrations of most of the theorems set out in it are usually done using calculus. Newton's reasoning also goes beyond the traditional boundaries of Euclidean geometry with the presence of both motion and infinitesimals. This thesis describes the mechanization of Lemmas and Propositions from the Principia using formal tools developed in the generic theorem prover Isabelle. We discuss the formalization of a geometry theory based on existing methods from automated geometry theorem proving. The theory contains extra geometric notions, including definitions of the ellipse and its tangent, that enable us to deal with the motion of bodies and other physical aspects. We introduce the formalization of a theory of filters and ultrafilters, and the purely definitional construction of the hyperreal numbers of Nonstandard Analysis (NSA). The hyperreals form a proper field extension of the reals that contains new types of numbers including infinitesimals and infinite numbers. By combining notions from NSA and geometry theorem proving, we propose an 'infinitesimal' geometry in which quantities can be infinitely small. This approach then reveals new properties of the geometry that only hold because infinitesimal elements are allowed. We also mechanize some analytic geometry and use it to verify the geometry theories of Isabelle. We then report on the main application of this framework. We discuss the formalization of several results from the Principia and give a detailed case study of one of its most important propositions: the Propositio Kepleriana. An anomaly is revealed in Newton's reasoning through our rigorous mechanization. Finally, we present the formalization of a portion of mathematical analysis using the nonstandard approach. We mechanize both standard and nonstandard definitions of familiar concepts, prove their equivalence, and use nonstandard arguments to provide intuitive yet rigorous proofs of many of their properties."
## Memoriile Secțiilor Științifice

Just another PDF Download site

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Science

Automatic theorem proving

Science