Mathematics

Algebraic Geometry

An Introduction

Author: Daniel Perrin

Publisher: Springer Science & Business Media

ISBN: 9781848000568

Category: Mathematics

Page: 263

View: 8841

Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.
Mathematics

An Invitation to Algebraic Geometry

Author: Karen E. Smith,Lauri Kahanpää,Pekka Kekäläinen,William Traves

Publisher: Springer Science & Business Media

ISBN: 1475744978

Category: Mathematics

Page: 164

View: 6025

This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
Mathematics

Algebraic Geometry and Commutative Algebra

Author: Siegfried Bosch

Publisher: Springer Science & Business Media

ISBN: 1447148290

Category: Mathematics

Page: 504

View: 472

Algebraic geometry is a fascinating branch of mathematics that combines methods from both, algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry, like algebraic number theory. The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts. More advanced readers can use the book to broaden their view on the subject. A separate part deals with the necessary prerequisites from commutative algebra. On a whole, the book provides a very accessible and self-contained introduction to algebraic geometry, up to a quite advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. This way the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature.
Mathematics

Complex Geometry

An Introduction

Author: Daniel Huybrechts

Publisher: Springer Science & Business Media

ISBN: 3540266879

Category: Mathematics

Page: 309

View: 733

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Mathematics

Higher-Dimensional Algebraic Geometry

Author: Olivier Debarre

Publisher: Springer Science & Business Media

ISBN: 147575406X

Category: Mathematics

Page: 234

View: 7362

The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.
Mathematics

Elementary Geometry of Algebraic Curves

An Undergraduate Introduction

Author: C. G. Gibson

Publisher: Cambridge University Press

ISBN: 9780521646413

Category: Mathematics

Page: 250

View: 949

Here is an introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book is well illustrated and contains several hundred worked examples and exercises. From the familiar lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, while the ideas of linear systems are used to discuss the classical group structure on the cubic.
Mathematics

Introduction to Algebraic Geometry

Author: Brendan Hassett

Publisher: Cambridge University Press

ISBN: 1139464590

Category: Mathematics

Page: N.A

View: 3293

Algebraic geometry, central to pure mathematics, has important applications in such fields as engineering, computer science, statistics and computational biology, which exploit the computational algorithms that the theory provides. Users get the full benefit, however, when they know something of the underlying theory, as well as basic procedures and facts. This book is a systematic introduction to the central concepts of algebraic geometry most useful for computation. Written for advanced undergraduate and graduate students in mathematics and researchers in application areas, it focuses on specific examples and restricts development of formalism to what is needed to address these examples. In particular, it introduces the notion of Gröbner bases early on and develops algorithms for almost everything covered. It is based on courses given over the past five years in a large interdisciplinary programme in computational algebraic geometry at Rice University, spanning mathematics, computer science, biomathematics and bioinformatics.
Geometry, Algebraic

Introduction to Algebraic Geometry

Author: Steven Dale Cutkosky

Publisher: American Mathematical Soc.

ISBN: 1470435187

Category: Geometry, Algebraic

Page: 484

View: 5917

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Mathematics

Isomonodromic Deformations and Frobenius Manifolds

An Introduction

Author: Claude Sabbah

Publisher: Springer Science & Business Media

ISBN: 9781848000544

Category: Mathematics

Page: 279

View: 8515

Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations. It ends with applications to recent research questions related to mirror symmetry. The fundamental tool used is that of a vector bundle with connection. The book includes complete proofs, and applications to recent research questions. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry.
Mathematics

Compact Riemann Surfaces

An Introduction to Contemporary Mathematics

Author: Jürgen Jost

Publisher: Springer Science & Business Media

ISBN: 9783540330677

Category: Mathematics

Page: 282

View: 2190

This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.
Mathematics

A Royal Road to Algebraic Geometry

Author: Audun Holme

Publisher: Springer Science & Business Media

ISBN: 9783642192258

Category: Mathematics

Page: 366

View: 2693

This book is about modern algebraic geometry. The title A Royal Road to Algebraic Geometry is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work Elements. Euclid is said to have answered: “There is no royal road to geometry!” The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense there is a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck’s theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime!
Mathematics

Algebraic Geometry over the Complex Numbers

Author: Donu Arapura

Publisher: Springer Science & Business Media

ISBN: 1461418097

Category: Mathematics

Page: 329

View: 5883

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
Mathematics

Hodge Theory and Complex Algebraic Geometry I:

Author: Claire Voisin

Publisher: Cambridge University Press

ISBN: 9781139437691

Category: Mathematics

Page: N.A

View: 4872

The first of two volumes offering a modern introduction to Kaehlerian geometry and Hodge structure. The book starts with basic material on complex variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory, the latter being treated in a more theoretical way than is usual in geometry. The author then proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The book culminates with the Hodge decomposition theorem. The meanings of these results are investigated in several directions. Completely self-contained, the book is ideal for students, while its content gives an account of Hodge theory and complex algebraic geometry as has been developed by P. Griffiths and his school, by P. Deligne, and by S. Bloch. The text is complemented by exercises which provide useful results in complex algebraic geometry.
Mathematics

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 3856

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Mathematics

An Introduction to Homological Algebra

Author: Charles A. Weibel

Publisher: Cambridge University Press

ISBN: 113964307X

Category: Mathematics

Page: N.A

View: 3158

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.
Mathematics

Algebraic Geometry: Sheaves and cohomology

Author: 健爾·上野

Publisher: American Mathematical Soc.

ISBN: 9780821813577

Category: Mathematics

Page: 184

View: 7120

Modern algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes is presented in the first part of this book (Algebraic Geometry 1: From Algebraic Varieties to Schemes, AMS, 1999, Translations of Mathematical Monographs, Volume 185). In the present book, the author turns to the theory of sheaves and their cohomology. Loosely speaking, a sheaf is a way of keeping track of local information defined on a topological space, such as the local algebraic functions on an algebraic manifold or the local sections of a vector bundle. Sheaf cohomology is a primary tool in understanding sheaves and using them to study properties of the corresponding manifolds. The text covers the important topics of the theory of sheaves on algebraic varieties, including types of sheaves and the fundamental operations on them, such as coherent and quasicoherent sheaves, direct and inverse images, behavior of sheaves under proper and projective morphisms, and Cech cohomology. The book contains numerous problems and exercises with solutions. It would be an excellent text for the second part of a course in algebraic geometry.
Mathematics

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1441974008

Category: Mathematics

Page: 410

View: 1541

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Mathematics

A Concise Course in Algebraic Topology

Author: J. P. May

Publisher: University of Chicago Press

ISBN: 9780226511832

Category: Mathematics

Page: 243

View: 693

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Mathematics

Algebraic Geometry

An Introduction to Birational Geometry of Algebraic Varieties

Author: S. Iitaka

Publisher: Springer

ISBN: 9781461381211

Category: Mathematics

Page: 357

View: 8303

The aim of this book is to introduce the reader to the geometric theory of algebraic varieties, in particular to the birational geometry of algebraic varieties. This volume grew out of the author's book in Japanese published in 3 volumes by Iwanami, Tokyo, in 1977. While writing this English version, the author has tried to rearrange and rewrite the original material so that even beginners can read it easily without referring to other books, such as textbooks on commutative algebra. The reader is only expected to know the definition of Noetherin rings and the statement of the Hilbert basis theorem. The new chapters 1, 2, and 10 have been expanded. In particular, the exposition of D-dimension theory, although shorter, is more complete than in the old version. However, to keep the book of manageable size, the latter parts of Chapters 6, 9, and 11 have been removed. I thank Mr. A. Sevenster for encouraging me to write this new version, and Professors K. K. Kubota in Kentucky and P. M. H. Wilson in Cam bridge for their careful and critical reading of the English manuscripts and typescripts. I held seminars based on the material in this book at The University of Tokyo, where a large number of valuable comments and suggestions were given by students Iwamiya, Kawamata, Norimatsu, Tobita, Tsushima, Maeda, Sakamoto, Tsunoda, Chou, Fujiwara, Suzuki, and Matsuda.