Mathematics

Algebraic Geometry

An Introduction

Author: Daniel Perrin

Publisher: Springer Science & Business Media

ISBN: 9781848000568

Category: Mathematics

Page: 263

View: 4882

Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.
Mathematics

An Invitation to Algebraic Geometry

Author: Karen E. Smith,Lauri Kahanpää,Pekka Kekäläinen,William Traves

Publisher: Springer Science & Business Media

ISBN: 1475744978

Category: Mathematics

Page: 164

View: 1584

This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
Mathematics

Algebraic Geometry and Commutative Algebra

Author: Siegfried Bosch

Publisher: Springer Science & Business Media

ISBN: 1447148290

Category: Mathematics

Page: 504

View: 5580

Algebraic geometry is a fascinating branch of mathematics that combines methods from both, algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry, like algebraic number theory. The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts. More advanced readers can use the book to broaden their view on the subject. A separate part deals with the necessary prerequisites from commutative algebra. On a whole, the book provides a very accessible and self-contained introduction to algebraic geometry, up to a quite advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. This way the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature.
Computers

Complex Geometry

An Introduction

Author: Daniel Huybrechts

Publisher: Springer Science & Business Media

ISBN: 9783540212904

Category: Computers

Page: 309

View: 4382

This accessible introduction to the contemporary theory of compact complex manifolds emphasizes Kahler manifolds in their various aspects and applications. It contains accounts of basic concepts, exercises to illustrate the theory, and chapter appendices that cover recent research. Two appendices at the end of the book recall basic facts from differential geometry, Hodge theory on differential manifold, sheaf theory and sheaf cohomology.
Mathematics

Higher-Dimensional Algebraic Geometry

Author: Olivier Debarre

Publisher: Springer Science & Business Media

ISBN: 147575406X

Category: Mathematics

Page: 234

View: 2892

The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.
Mathematics

Algebraic Geometry for Scientists and Engineers

Author: Shreeram Shankar Abhyankar

Publisher: American Mathematical Soc.

ISBN: 0821815350

Category: Mathematics

Page: 295

View: 7181

This book, based on lectures presented in courses on algebraic geometry taught by the author at Purdue University, is intended for engineers and scientists (especially computer scientists), as well as graduate students and advanced undergraduates in mathematics. In addition to providing a concrete or algorithmic approach to algebraic geometry, the author also attempts to motivate and explain its link to more modern algebraic geometry based on abstract algebra.The book covers various topics in the theory of algebraic curves and surfaces, such as rational and polynomial parametrization, functions and differentials on a curve, branches and valuations, and resolution of singularities. The emphasis is on presenting heuristic ideas and suggestive arguments rather than formal proofs. Readers will gain new insight into the subject of algebraic geometry in a way that should increase appreciation of modern treatments of the subject, as well as enhance its utility in applications in science and industry.
Mathematics

Elementary Geometry of Algebraic Curves

An Undergraduate Introduction

Author: C. G. Gibson

Publisher: Cambridge University Press

ISBN: 9780521646413

Category: Mathematics

Page: 250

View: 8553

Here is an introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book is well illustrated and contains several hundred worked examples and exercises. From the familiar lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, while the ideas of linear systems are used to discuss the classical group structure on the cubic.
Mathematics

Introduction to Algebraic Geometry

Author: Brendan Hassett

Publisher: Cambridge University Press

ISBN: 1139464590

Category: Mathematics

Page: N.A

View: 8376

Algebraic geometry, central to pure mathematics, has important applications in such fields as engineering, computer science, statistics and computational biology, which exploit the computational algorithms that the theory provides. Users get the full benefit, however, when they know something of the underlying theory, as well as basic procedures and facts. This book is a systematic introduction to the central concepts of algebraic geometry most useful for computation. Written for advanced undergraduate and graduate students in mathematics and researchers in application areas, it focuses on specific examples and restricts development of formalism to what is needed to address these examples. In particular, it introduces the notion of Gröbner bases early on and develops algorithms for almost everything covered. It is based on courses given over the past five years in a large interdisciplinary programme in computational algebraic geometry at Rice University, spanning mathematics, computer science, biomathematics and bioinformatics.
Mathematics

Compact Riemann Surfaces

An Introduction to Contemporary Mathematics

Author: Jürgen Jost

Publisher: Springer Science & Business Media

ISBN: 9783540330677

Category: Mathematics

Page: 282

View: 8936

This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.
Mathematics

Isomonodromic Deformations and Frobenius Manifolds

An Introduction

Author: Claude Sabbah

Publisher: Springer Science & Business Media

ISBN: 9781848000544

Category: Mathematics

Page: 279

View: 4192

Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations. It ends with applications to recent research questions related to mirror symmetry. The fundamental tool used is that of a vector bundle with connection. The book includes complete proofs, and applications to recent research questions. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry.
Mathematics

Algebraic Geometry over the Complex Numbers

Author: Donu Arapura

Publisher: Springer Science & Business Media

ISBN: 1461418097

Category: Mathematics

Page: 329

View: 6982

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
Mathematics

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1441974008

Category: Mathematics

Page: 410

View: 1961

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Mathematics

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 5382

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Mathematics

A Royal Road to Algebraic Geometry

Author: Audun Holme

Publisher: Springer Science & Business Media

ISBN: 9783642192258

Category: Mathematics

Page: 366

View: 9670

This book is about modern algebraic geometry. The title A Royal Road to Algebraic Geometry is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work Elements. Euclid is said to have answered: “There is no royal road to geometry!” The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense there is a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck’s theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime!
Mathematics

Algebraic Geometry: Sheaves and cohomology

Author: 健爾·上野

Publisher: American Mathematical Soc.

ISBN: 9780821813577

Category: Mathematics

Page: 184

View: 2912

Modern algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes is presented in the first part of this book (Algebraic Geometry 1: From Algebraic Varieties to Schemes, AMS, 1999, Translations of Mathematical Monographs, Volume 185). In the present book, the author turns to the theory of sheaves and their cohomology. Loosely speaking, a sheaf is a way of keeping track of local information defined on a topological space, such as the local algebraic functions on an algebraic manifold or the local sections of a vector bundle. Sheaf cohomology is a primary tool in understanding sheaves and using them to study properties of the corresponding manifolds. The text covers the important topics of the theory of sheaves on algebraic varieties, including types of sheaves and the fundamental operations on them, such as coherent and quasicoherent sheaves, direct and inverse images, behavior of sheaves under proper and projective morphisms, and Cech cohomology. The book contains numerous problems and exercises with solutions. It would be an excellent text for the second part of a course in algebraic geometry.
Mathematics

An Introduction to Homological Algebra

Author: Charles A. Weibel

Publisher: Cambridge University Press

ISBN: 113964307X

Category: Mathematics

Page: N.A

View: 7411

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.
Mathematics

Algebraic Geometry: From algebraic varieties to schemes

Author: 健爾·上野

Publisher: American Mathematical Soc.

ISBN: 9780821808627

Category: Mathematics

Page: 154

View: 3023

This is the first of three volumes on algebraic geometry. The second volume, Algebraic Geometry 2: Sheaves and Cohomology, is available from the AMS as Volume 197 in the Translations of Mathematical Monographs series. Early in the 20th century, algebraic geometry underwent a significant overhaul, as mathematicians, notably Zariski, introduced a much stronger emphasis on algebra and rigor into the subject. This was followed by another fundamental change in the 1960s with Grothendieck's introduction of schemes. Today, most algebraic geometers are well-versed in the language of schemes, but many newcomers are still initially hesitant about them. Ueno's book provides an inviting introduction to the theory, which should overcome any such impediment to learning this rich subject. The book begins with a description of the standard theory of algebraic varieties. Then, sheaves are introduced and studied, using as few prerequisites as possible. Once sheaf theory has been well understood, the next step is to see that an affine scheme can be defined in terms of a sheaf over the prime spectrum of a ring. By studying algebraic varieties over a field, Ueno demonstrates how the notion of schemes is necessary in algebraic geometry. This first volume gives a definition of schemes and describes some of their elementary properties. It is then possible, with only a little additional work, to discover their usefulness. Further properties of schemes will be discussed in the second volume. Ueno's book is a self-contained introduction to this important circle of ideas, assuming only a knowledge of basic notions from abstract algebra (such as prime ideals). It is suitable as a text for an introductory course on algebraic geometry.
Mathematics

A Concise Course in Algebraic Topology

Author: J. P. May

Publisher: University of Chicago Press

ISBN: 9780226511832

Category: Mathematics

Page: 243

View: 3694

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Mathematics

Homology Theory

An Introduction to Algebraic Topology

Author: James W. Vick

Publisher: Springer Science & Business Media

ISBN: 9780387941264

Category: Mathematics

Page: 242

View: 6750

This book is designed to be an introduction to some of the basic ideas in the field of algebraic topology. In particular, it is devoted to the foundations and applications of homology theory. The only prerequisite for the student is a basic knowledge of abelian groups and point set topology. The essentials of singular homology are given in the first chapter, along with some of the most important applications. In this way the student can quickly see the importance of the material. The successive topics include attaching spaces, finite CW complexes, the Eilenberg-Steenrod axioms, cohomology products, manifolds, Poincare duality, and fixed point theory. Throughout the book, the approach is as illustrative as possible, with numerous examples and diagrams. Extremes of generality are sacrificed when they are likely to obscure the essential concepts involved. The book is intended to be easily read by students as a textbook for a course or as a source for individual study. This second edition has been expanded to include a new chapter on covering spaces, as well as additional illuminating exercises. The conceptual approach is again used to show how lifting problems give rise to the fundamental group and its properties.