**Author**: Robin Hartshorne

**Publisher:** Springer Science & Business Media

**ISBN:** 1475738498

**Category:** Mathematics

**Page:** 496

**View:** 4002

Skip to content
# Free eBooks PDF

## Algebraic Geometry

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
## New Trends in Algebraic Geometry

Seventeen articles from the most outstanding contemporary topics in algebraic geometry.
## Positivity in algebraic geometry 2

This two volume work on "Positivity in Algebraic Geometry" contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Whereas Volume I is more elementary, the present Volume II is more at the research level and somewhat more specialized. Both volumes are also available as hardcover edition as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete".
## Current Topics in Complex Algebraic Geometry

This volume collects a series of survey articles on complex algebraic geometry, which in the early 1990s was undergoing a major change. Algebraic geometry has opened up to ideas and connections from other fields that have traditionally been far away. This book gives a good idea of the intellectual content of the change of direction and branching out witnessed by algebraic geometry in the past few years.
## Topics in Algebraic Geometry and Geometric Modeling

Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture. The NSF sponsored the four-day ``Vilnius Workshop on Algebraic Geometry and Geometric Modeling'', which brought together some of the top experts in the two research communities to examine a wide range of topics of interest to both fields. This volume is an outgrowth of that workshop. Included are surveys, tutorials, and research papers. In addition, the editors have included a translation of Minding's 1841 paper, ``On the determination of the degree of an equation obtained by elimination'', which foreshadows the modern application of mixed volumes in algebraic geometry. The volume is suitable for mathematicians, computer scientists, and engineers interested in applications of algebraic geometry to geometric modeling.
## Algebraic Geometry

Presents a compendium of papers selected from the Europroj conferences held in Catania and Barcelona. The text contains research in algebraic geometry with emphasis on classification problems, and in particular studies on the structure of moduli spaces of vector bundles, and on the classification of curves and surfaces.
## An Introduction to Algebraic Geometry and Algebraic Groups

An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles. Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type. The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, a thorough treatment of Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields. Experts in the field will enjoy some of the new approaches to classical results. The text uses algebraic groups as the main examples, including worked out examples, instructive exercises, as well as bibliographical and historical remarks.
## Selected Papers on Number Theory and Algebraic Geometry

does not need NBB copy
## Methods of Algebraic Geometry:

All three volumes of Hodge and Pedoe's classic work have now been reissued. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.
## Higher-Dimensional Algebraic Geometry

The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.
## Algebraic Geometry: From algebraic varieties to schemes

Beginning algebraic geometers are well served by Uneno's inviting introduction to the language of schemes. Grothendieck's schemes and Zariski's emphasis on algebra and rigor are primary sources for this introduction to a rich mathematical subject. Ueno's book is a self-contained text suitable for an introductory course on algebraic geometry.
## Algebraic Geometry: Sheaves and cohomology

Modern algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes is presented in the first part of this book (Algebraic Geometry 1: From Algebraic Varieties to Schemes, AMS, 1999, Translations of Mathematical Monographs, Volume 185). In the present book, the author turns to the theory of sheaves and their cohomology. Loosely speaking, a sheaf is a way of keeping track of local information defined on a topological space, such as the local algebraic functions on an algebraic manifold or the local sections of a vector bundle. Sheaf cohomology is a primary tool in understanding sheaves and using them to study properties of the corresponding manifolds. The text covers the important topics of the theory of sheaves on algebraic varieties, including types of sheaves and the fundamental operations on them, such as coherent and quasicoherent sheaves, direct and inverse images, behavior of sheaves under proper and projective morphisms, and Cech cohomology. The book contains numerous problems and exercises with solutions. It would be an excellent text for the second part of a course in algebraic geometry.
## Algebraic Geometry

"This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS
## Commutative Algebra

Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.
## Algebraic Geometry

Students often find, in setting out to study algebraic geometry, that most of the serious textbooks on the subject require knowledge of ring theory, field theory, local rings, and transcendental field extensions, and even sheaf theory. Often the expected background goes well beyond college mathematics. This book, aimed at senior undergraduates and graduate students, grew out of Miyanishi's attempt to lead students to an understanding of algebraic surfaces while presenting thenecessary background along the way. Originally published in Japanese in 1990, it presents a self-contained introduction to the fundamentals of algebraic geometry. This book begins with background on commutative algebras, sheaf theory, and related cohomology theory. The next part introduces schemes andalgebraic varieties, the basic language of algebraic geometry. The last section brings readers to a point at which they can start to learn about the classification of algebraic surfaces.
## Algebraic Geometry and Singularities

The volume contains both general and research papers. Among the first ones are papers showing recent and original developments or methods in subjects such as resolution of singularities, D-module theory, singularities of maps and geometry of curves. The research papers deal on topics related to, or close to, those listed_above. The contributions are organized in three parts according to their contents. Part I presents a set of papers on resolution of singularities, a topic of renewed activity. It deals with important topics of current interest, such as canonical, algorithmic, combinatorial and graphical procedures (Villamayor, Oka, Marijmin), as well as special results on desingularization in characteristic p (Cossart, Moh), and connections between resolution and structure of the space of arcs through a singularity (Gonz81ez-Sprinberg-Lejeune-Jalabert). Part II contains a series of papers on the study~of singularities and its connections with differential systems and deformation or perturbation theo ries. Two expository papers (Maisonobe-Briam;on, :'vlebkhout) describe, in an algebro-geometric way, the interaction between singularities and D-module t.he ory including recent progress on Bernstein polynomials and Newton polygon techniques. Geometry of foliations (Henaut, Garcfa-Reguera), polar varieties and stratifications (Hajto) are also topics treated here. Two other papers (Wall, Greuel-Pfister) deal with quasihomogeneous singularities in the contexts of per turbations and moduli spaces. Globalization of deformations of singularities (de Jong) and determination of complex topology from the real one (~10nd) com plete this series of papers. Part III consists of papers on algebraic geometry of curves and surfaces.
## Vector Bundles in Algebraic Geometry

The study of vector bundles over algebraic varieties has been stimulated over the last few years by successive waves of migrant concepts, largely from mathematical physics, whilst retaining its roots in old questions concerning subvarieties of projective space. The 1993 Durham Symposium on Vector Bundles in Algebraic Geometry brought together some of the leading researchers in the field to explore further these interactions. This book is a collection of survey articles by the main speakers at the symposium and presents to the mathematical world an overview of the key areas of research involving vector bundles. Topics covered include those linking gauge theory and geometric invariant theory such as augmented bundles and coherent systems; Donaldson invariants of algebraic surfaces; Floer homology and quantum cohomology; conformal field theory and the moduli spaces of bundles on curves; the Horrocks–Mumford bundle and codimension 2 subvarieties in P4 and P5; exceptional bundles and stable sheaves on projective space.
## Introduction to Commutative Algebra and Algebraic Geometry

Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.
## Algebraic Geometry and Its Applications

## Affine algebraic geometry

Just another PDF Download site

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics