Mathematics

Big Data and Social Science

A Practical Guide to Methods and Tools

Author: Ian Foster,Rayid Ghani,Ron S. Jarmin,Frauke Kreuter,Julia Lane

Publisher: CRC Press

ISBN: 1498751431

Category: Mathematics

Page: 376

View: 5904

Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.
Business & Economics

Decision Sciences

Theory and Practice

Author: Raghu Nandan Sengupta,Aparna Gupta,Joydeep Dutta

Publisher: CRC Press

ISBN: 1351727400

Category: Business & Economics

Page: 1026

View: 2006

This handbook is an endeavour to cover many current, relevant, and essential topics related to decision sciences in a scientific manner. Using this handbook, graduate students, researchers, as well as practitioners from engineering, statistics, sociology, economics, etc. will find a new and refreshing paradigm shift as to how these topics can be put to use beneficially. Starting from the basics to advanced concepts, authors hope to make the readers well aware of the different theoretical and practical ideas, which are the focus of study in decision sciences nowadays. It includes an excellent bibliography/reference/journal list, information about a variety of datasets, illustrated pseudo-codes, and discussion of future trends in research. Covering topics ranging from optimization, networks and games, multi-objective optimization, inventory theory, statistical methods, artificial neural networks, times series analysis, simulation modeling, decision support system, data envelopment analysis, queueing theory, etc., this reference book is an attempt to make this area more meaningful for varied readers. Noteworthy features of this handbook are in-depth coverage of different topics, solved practical examples, unique datasets for a variety of examples in the areas of decision sciences, in-depth analysis of problems through colored charts, 3D diagrams, and discussions about software.
Mathematics

Handbook of Item Response Theory, Volume Three

Applications

Author: Wim J. van der Linden

Publisher: CRC Press

ISBN: 1351643703

Category: Mathematics

Page: 576

View: 7003

Drawing on the work of internationally acclaimed experts in the field, Handbook of Item Response Theory, Volume 3: Applications presents applications of item response theory to practical testing problems. While item response theory may be known primarily for its advances in theoretical modeling of responses to test items, equal progress has been made in its providing innovative solutions to daily testing problems. This third volume in a three-volume set highlights the major applications. Specifically, this volume covers applications to test item calibration, item analysis, model fit checking, test-score interpretation, optimal test design, adaptive testing, standard setting, and forensic analyses of response data. It describes advances in testing in areas such as large-scale educational assessment, psychological testing, health measurement, and measurement of change. In addition, it extensively reviews computer programs available to run any of the models and applications in Volume One and Three. Features Includes contributions from internationally acclaimed experts with a history of advancing applications of item response theory Provides extensive cross-referencing and common notation across all chapters in this three-volume set Underscores the importance of treating each application in a statistically rigorous way Reviews major computer programs for item response theory analyses and applications. Wim J. van der Linden is a distinguished scientist and director of research and innovation at Pacific Metrics Corporation. Dr. van der Linden is also a professor emeritus of measurement and data analysis at the University of Twente. His research interests include test theory, adaptive testing, optimal test assembly, parameter linking, test equating, and response-time modeling as well as decision theory and its applications to problems of educational decision making.
Political Science

Wohlfahrtspolitik im 21. Jahrhundert

Neue Wege der Forschung

Author: Marius Busemeyer

Publisher: Campus Verlag

ISBN: 3593399032

Category: Political Science

Page: 323

View: 3470

Der Wohlfahrtsstaat mit seinen umfassenden Sicherungssystemen ist ein zentrales Strukturmerkmal aller fortgeschrittenen Demokratien. Wohlfahrtspolitik steht heute jedoch vor ganz anderen Herausforderungen als noch in der Nachkriegszeit: demografischer und technologischer Wandel, Tertiarisierung, Entstandardisierung der Erwerbsformen, Migration, abgeflachtes Wirtschaftswachstum, usw. Angesichts dessen muss sich die Sozialpolitikforschung methodisch-analytisch und thematisch grundlegend erneuern: Es gilt, alte Denkmodelle abzulösen, die auf einem methodologischen Nationalismus gründen oder die zu eng am jeweiligen Politikfeld haften – zugunsten von sektorenübergreifenden Analysen, die auch transnationale Verflechtungsmuster berücksichtigen.
Computers

R in a Nutshell

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 8463

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.
Mathematics

Computerized Multistage Testing

Theory and Applications

Author: Duanli Yan,Alina A. von Davier,Charles Lewis

Publisher: CRC Press

ISBN: 146650580X

Category: Mathematics

Page: 546

View: 7908

Devising tests that evaluate a nation’s educational standing and implement efficacious educational reforms requires a careful balance among the contributions of technology, psychometrics, test design, and the learning sciences. Unlike other forms of adaptive testing, multistage testing (MST) is highly suitable for testing educational achievement because it can be adapted to educational surveys and student testing. Computerized Multistage Testing: Theory and Applications covers the methodologies, underlying technology, and implementation aspects of this type of test design. The book discusses current scientific perspectives and practical considerations for each step involved in setting up an MST program. It covers the history of MST, test design and implementation for various purposes, item pool development and maintenance, IRT-based and classical test theory-based methodologies for test assembly, routing and scoring, equating, test security, and existing software. It also explores current research, existing operational programs, and innovative future assessments using MST. Intended for psychologists, social scientists, and educational measurement scientists, this volume provides the first unified source of information on the design, psychometrics, implementation, and operational use of MST. It shows how to apply theoretical statistical tools to testing in novel and useful ways. It also explains how to explicitly tie the assumptions made by each model to observable (or at least inferable) data conditions. Winner of the 2016 AERA Award for Significant Contribution to Educational Measurement and Research Methodology The 2016 American Education Research Association (AERA) Div. D award committee for Significant Contributions to Educational Measurement and Research Methodology has recognized unanimously this collaborative work advancing the theory and applications of computerized MST. This annual award recognizes published research judged to represent a significant conceptual advancement in the theory and practice of educational measurement and/or educational research methodology. The 2016 award was made under the heading: Measurement, Psychometrics, and Assessment. This collective work, published in 2014 as an edited volume titled Computerized Multistage Testing: Theory and Applications, was cited by the committee both for the originality of the conceptual foundations presented in support of multistage testing and for arguing persuasively for its potential impact on the practice of educational measurement.
Business & Economics

Computational Intelligent Data Analysis for Sustainable Development

Author: Ting Yu,Nitesh Chawla,Simeon Simoff

Publisher: CRC Press

ISBN: 1439895953

Category: Business & Economics

Page: 440

View: 2464

Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems. With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors. The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights. The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process. Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment. In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy. Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.
Experimental design

Technometrics

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Experimental design

Page: N.A

View: 5253

Mathematics

Wahrscheinlichkeitsrechnung und Statistik

Author: Robert Hafner

Publisher: Springer-Verlag

ISBN: 3709169445

Category: Mathematics

Page: 512

View: 3387

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.
Computers

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 6696

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.
Social Science

Neue Trends in den Sozialwissenschaften

Innovative Techniken für qualitative und quantitative Forschung

Author: Sebastian Jäckle

Publisher: Springer-Verlag

ISBN: 3658171898

Category: Social Science

Page: 372

View: 9306

Dieses Buch stellt einige wichtige und zukunftsträchtige neuere Methoden in den Sozialwissenschaften vor. Ziel des Buches ist, einerseits deren Grundlogik zu klären und andererseits zu zeigen, inwiefern sie den klassischen Methodenkatalog sinnvoll ergänzen können. Dazu wird das Spektrum an mit diesen Techniken bearbeitbaren Fragestellungen aufgezeigt, Beispielarbeiten diskutiert, nötige Voraussetzungen z.B. in Bezug auf die Datenqualität angesprochen, und damit insgesamt das Potential dieser Verfahren veranschaulicht. Zudem gibt jeder Beitrag praktische Tipps für die Umsetzung eigener Forschungsarbeiten und anhand kommentierter Literaturempfehlungen Ansatzpunkte für die intensivere Beschäftigung mit den Methoden. Daneben wird (sofern angebracht) kurz diskutiert welche Softwarepakete sich für die Anwendung eignen.
American literature

Forthcoming Books

Author: Rose Arny

Publisher: N.A

ISBN: N.A

Category: American literature

Page: N.A

View: 3911

Science

Graphische Semiologie

Diagramme, Netze, Karten

Author: Jacques Bertin

Publisher: Walter de Gruyter

ISBN: 3110834901

Category: Science

Page: 430

View: 2201

Über Wachstum und Form

Author: D'Arcy Wentworth Thompson,Anita Albus

Publisher: N.A

ISBN: 9783821845685

Category:

Page: 477

View: 9100

SPSS (Computer system)

SPSS 16

Einführung in die moderne Datenanalyse

Author: Achim Bühl

Publisher: Pearson Deutschland GmbH

ISBN: 9783827373328

Category: SPSS (Computer system)

Page: 888

View: 8925

Die Standardeinführung für SPSS ist auf der Basis zahlreicher neuer Datensätze für die Version 16 vollständig überarbeitet und erweitert worden. Ausgehend von Problemstellungen aus der Praxis wird gezeigt, wie Sie mit SPSS arbeiten können. Die Beispiele basieren meist auf Fallstudien und sind vor allem dem sozialwissenschaftlichen und dem psychologisch-medizinischen Bereich entnommen. Der Autor beschreibt ausführlich den kompletten statistischen Inhalt der Module Base, Regression Models und Advanced Models. In der 11. Auflage des Werks nimmt erstmals auch die Korrespondenzanalyse einen breiten Raum ein; ein Verfahren, das immer häufiger eingesetzt wird und Zusammenhänge von Variablen optisch als Punkte eines geometrischen Raums aufbereitet.
Computers

Computational Social Network Analysis

Trends, Tools and Research Advances

Author: Kai Subel,Michel Schultz

Publisher: GRIN Verlag

ISBN: 3640733061

Category: Computers

Page: 21

View: 4796

Studienarbeit aus dem Jahr 2010 im Fachbereich Informatik - Internet, neue Technologien, Universität Hamburg, Sprache: Deutsch, Abstract: Diese Ausarbeitung befasst sich mit dem Thema Computational Soical Network Analysis. Ziel ist es, dem Leser einen Einblick in diese Thematik zu verschaffen. Dabei werden Hintergründe, anwendbare Methoden und Tools vorgestellt, die hierbei Verwendung finden. Zunächst wird dabei näher auf den Hintergrund, also warum dieses Gebiet als Forschungsgegenstand so interessant ist, eingegangen. Anschließend werden verschiedene Aspekte, die man im Rahmen der Analyse sozialer Netzwerke untersuchen kann benannt. In diesem Zusammenhang werden auch zwei verschiedene Kategorien zur formalen Analyse benannt. Zur Verdeutlichung wird die Verwendung dieser am Ende des Kapitels auch noch einmal anhand eines Praxisbeispiels gezeigt. Das nächste Kapitel befasst sich mit der Fragstellung, wie Schlüsselfiguren in Netzwerken ermittelt werden können und was für Rollen diese spielen. Dabei werden auch die verschiedenen Arten von Schlüsselfiguren benannt. Eine weitere zentrale Rolle in der Analyse sozialer Netzwerke nehmen Gruppen ein. Die Bedeutung von Gruppen und wie man sie ermitteln kann wird im nächsten Kapitel erläutert. Aufbauend auf den Gruppen sollen Interaktionen innerhalb von Netzwerken untersucht werden. Hierfür werden zunächst die nötigen Werkzeuge, wie die SCAN oder DISSECT Methode vorgestellt und anschließend die Einsatzgebiete anhand von Beispielen verdeutlicht. Im 7. Kapitel wird eine eLearning Plattform näher betrachtet. Hierbei werden zunächst die Eigenschaften und Besonderheiten von eLearning Plattformen beschrieben und anschießend anhand eines Praxisbeispiels verschiedene Methoden zur Analyse sozialer Netzwerke angewendet.
Mathematics

Programmieren mit R

Author: Uwe Ligges

Publisher: Springer-Verlag

ISBN: 3540267328

Category: Mathematics

Page: 237

View: 7692

R ist eine objekt-orientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik - frei erhältlich unter der GPL. Ziel dieses Buches ist es, nicht nur ausführlich in die Grundlagen der Sprache R einzuführen, sondern auch ein Verständnis der Struktur der Sprache zu vermitteln. Leicht können so eigene Methoden umgesetzt, Objektklassen definiert und ganze Pakete aus Funktionen und zugehöriger Dokumentation zusammengestellt werden. Die enormen Grafikfähigkeiten von R werden detailliert beschrieben. Das Buch richtet sich an alle, die R als flexibles Werkzeug zur Datenenalyse und -visualisierung einsetzen möchten: Studierende, die Daten in Projekten oder für ihre Diplomarbeit analysieren möchten, Forschende, die neue Methoden ausprobieren möchten, und diejenigen, die in der Wirtschaft täglich Daten aufbereiten, analysieren und anderen in komprimierter Form präsentieren.