Computers

Big Data SMACK

A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka

Author: Raul Estrada,Isaac Ruiz

Publisher: Apress

ISBN: 1484221753

Category: Computers

Page: 264

View: 8517

Learn how to integrate full-stack open source big data architecture and to choose the correct technology—Scala/Spark, Mesos, Akka, Cassandra, and Kafka—in every layer. Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses. Big Data SMACK explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. This book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer: The language: Scala The engine: Spark (SQL, MLib, Streaming, GraphX) The container: Mesos, Docker The view: Akka The storage: Cassandra The message broker: Kafka What You Will Learn: Make big data architecture without using complex Greek letter architectures Build a cheap but effective cluster infrastructure Make queries, reports, and graphs that business demands Manage and exploit unstructured and No-SQL data sources Use tools to monitor the performance of your architecture Integrate all technologies and decide which ones replace and which ones reinforce Who This Book Is For: Developers, data architects, and data scientists looking to integrate the most successful big data open stack architecture and to choose the correct technology in every layer
Computers

Big Data SMACK

A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka

Author: Raul Estrada,Isaac Ruiz

Publisher: Apress

ISBN: 9781484221747

Category: Computers

Page: 212

View: 8829

This book is about how to integrate full-stack open source big data architecture and how to choose the correct technology—Scala/Spark, Mesos, Akka, Cassandra, and Kafka—in every layer. Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large datasets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses. Big Data SMACK explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. The book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer: The language: Scala The engine: Spark (SQL, MLib, Streaming, GraphX) The container: Mesos, Docker The view: Akka The storage: Cassandra The message broker: Kafka What you’ll learn How to make big data architecture without using complex Greek letter architectures. How to build a cheap but effective cluster infrastructure. How to make queries, reports, and graphs that business demands. How to manage and exploit unstructured and No-SQL data sources. How use tools to monitor the performance of your architecture. How to integrate all technologies and decide which replace and which reinforce. Who This Book Is For This book is for developers, data architects, and data scientists looking for how to integrate the most successful big data open stack architecture and how to choose the correct technology in every layer.
Computers

Fast Data Processing Systems with SMACK Stack

Author: Raul Estrada

Publisher: Packt Publishing Ltd

ISBN: 1786468069

Category: Computers

Page: 376

View: 9068

Combine the incredible powers of Spark, Mesos, Akka, Cassandra, and Kafka to build data processing platforms that can take on even the hardest of your data troubles! About This Book This highly practical guide shows you how to use the best of the big data technologies to solve your response-critical problems Learn the art of making cheap-yet-effective big data architecture without using complex Greek-letter architectures Use this easy-to-follow guide to build fast data processing systems for your organization Who This Book Is For If you are a developer, data architect, or a data scientist looking for information on how to integrate the Big Data stack architecture and how to choose the correct technology in every layer, this book is what you are looking for. What You Will Learn Design and implement a fast data Pipeline architecture Think and solve programming challenges in a functional way with Scala Learn to use Akka, the actors model implementation for the JVM Make on memory processing and data analysis with Spark to solve modern business demands Build a powerful and effective cluster infrastructure with Mesos and Docker Manage and consume unstructured and No-SQL data sources with Cassandra Consume and produce messages in a massive way with Kafka In Detail SMACK is an open source full stack for big data architecture. It is a combination of Spark, Mesos, Akka, Cassandra, and Kafka. This stack is the newest technique developers have begun to use to tackle critical real-time analytics for big data. This highly practical guide will teach you how to integrate these technologies to create a highly efficient data analysis system for fast data processing. We'll start off with an introduction to SMACK and show you when to use it. First you'll get to grips with functional thinking and problem solving using Scala. Next you'll come to understand the Akka architecture. Then you'll get to know how to improve the data structure architecture and optimize resources using Apache Spark. Moving forward, you'll learn how to perform linear scalability in databases with Apache Cassandra. You'll grasp the high throughput distributed messaging systems using Apache Kafka. We'll show you how to build a cheap but effective cluster infrastructure with Apache Mesos. Finally, you will deep dive into the different aspect of SMACK using a few case studies. By the end of the book, you will be able to integrate all the components of the SMACK stack and use them together to achieve highly effective and fast data processing. Style and approach With the help of various industry examples, you will learn about the full stack of big data architecture, taking the important aspects in every technology. You will learn how to integrate the technologies to build effective systems rather than getting incomplete information on single technologies. You will learn how various open source technologies can be used to build cheap and fast data processing systems with the help of various industry examples
Computers

Scalable Big Data Architecture

A practitioners guide to choosing relevant Big Data architecture

Author: Bahaaldine Azarmi

Publisher: Apress

ISBN: 1484213262

Category: Computers

Page: 141

View: 8871

This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.
COMPUTERS

High Performance Spark

Best Practices for Scaling and Optimizing Apache Spark

Author: Holden Karau,Rachel Warren

Publisher: "O'Reilly Media, Inc."

ISBN: 1491943173

Category: COMPUTERS

Page: 358

View: 3239

Apache Spark is amazing when everything clicks. But if you haven’t seen the performance improvements you expected, or still don’t feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources. Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you’ll also learn how to make it sing. With this book, you’ll explore: How Spark SQL’s new interfaces improve performance over SQL’s RDD data structure The choice between data joins in Core Spark and Spark SQL Techniques for getting the most out of standard RDD transformations How to work around performance issues in Spark’s key/value pair paradigm Writing high-performance Spark code without Scala or the JVM How to test for functionality and performance when applying suggested improvements Using Spark MLlib and Spark ML machine learning libraries Spark’s Streaming components and external community packages
Computers

Expert Apache Cassandra Administration

Author: Sam R. Alapati

Publisher: Apress

ISBN: 1484231260

Category: Computers

Page: 467

View: 9786

Follow this handbook to build, configure, tune, and secure Apache Cassandra databases. Start with the installation of Cassandra and move on to the creation of a single instance, and then a cluster of Cassandra databases. Cassandra is increasingly a key player in many big data environments, and this book shows you how to use Cassandra with Apache Spark, a popular big data processing framework. Also covered are day-to-day topics of importance such as the backup and recovery of Cassandra databases, using the right compression and compaction strategies, and loading and unloading data. Expert Apache Cassandra Administration provides numerous step-by-step examples starting with the basics of a Cassandra database, and going all the way through backup and recovery, performance optimization, and monitoring and securing the data. The book serves as an authoritative and comprehensive guide to the building and management of simple to complex Cassandra databases. The book: Takes you through building a Cassandra database from installation of the software and creation of a single database, through to complex clusters and data centers Provides numerous examples of actual commands in a real-life Cassandra environment that show how to confidently configure, manage, troubleshoot, and tune Cassandra databases Shows how to use the Cassandra configuration properties to build a highly stable, available, and secure Cassandra database that always operates at peak efficiency What You'll Learn Install the Cassandra software and create your first database Understand the Cassandra data model, and the internal architecture of a Cassandra database Create your own Cassandra cluster, step-by-step Run a Cassandra cluster on Docker Work with Apache Spark by connecting to a Cassandra database Deploy Cassandra clusters in your data center, or on Amazon EC2 instances Back up and restore mission-critical Cassandra databases Monitor, troubleshoot, and tune production Cassandra databases, and cut your spending on resources such as memory, servers, and storage Who This Book Is For Database administrators, developers, and architects who are looking for an authoritative and comprehensive single volume for all their Cassandra administration needs. Also for administrators who are tasked with setting up and maintaining highly reliable and high-performing Cassandra databases. An excellent choice for big data administrators, database administrators, architects, and developers who use Cassandra as their key data store, to support high volume online transactions, or as a decentralized, elastic data store.
Computers

Kafka: The Definitive Guide

Real-Time Data and Stream Processing at Scale

Author: Neha Narkhede,Gwen Shapira,Todd Palino

Publisher: "O'Reilly Media, Inc."

ISBN: 1491936118

Category: Computers

Page: 322

View: 2601

Every enterprise application creates data, whether it’s log messages, metrics, user activity, outgoing messages, or something else. And how to move all of this data becomes nearly as important as the data itself. If you’re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds. Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you’ll learn Kafka’s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer. Understand publish-subscribe messaging and how it fits in the big data ecosystem. Explore Kafka producers and consumers for writing and reading messages Understand Kafka patterns and use-case requirements to ensure reliable data delivery Get best practices for building data pipelines and applications with Kafka Manage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasks Learn the most critical metrics among Kafka’s operational measurements Explore how Kafka’s stream delivery capabilities make it a perfect source for stream processing systems
Computers

Cassandra: The Definitive Guide

Distributed Data at Web Scale

Author: Jeff Carpenter,Eben Hewitt

Publisher: "O'Reilly Media, Inc."

ISBN: 1491933631

Category: Computers

Page: 370

View: 6237

Imagine what you could do if scalability wasn't a problem. With this hands-on guide, you’ll learn how the Cassandra database management system handles hundreds of terabytes of data while remaining highly available across multiple data centers. This expanded second edition—updated for Cassandra 3.0—provides the technical details and practical examples you need to put this database to work in a production environment. Authors Jeff Carpenter and Eben Hewitt demonstrate the advantages of Cassandra’s non-relational design, with special attention to data modeling. If you’re a developer, DBA, or application architect looking to solve a database scaling issue or future-proof your application, this guide helps you harness Cassandra’s speed and flexibility. Understand Cassandra’s distributed and decentralized structure Use the Cassandra Query Language (CQL) and cqlsh—the CQL shell Create a working data model and compare it with an equivalent relational model Develop sample applications using client drivers for languages including Java, Python, and Node.js Explore cluster topology and learn how nodes exchange data Maintain a high level of performance in your cluster Deploy Cassandra on site, in the Cloud, or with Docker Integrate Cassandra with Spark, Hadoop, Elasticsearch, Solr, and Lucene
Computers

Lumen Programming Guide

Writing PHP Microservices, REST and Web Service APIs

Author: Paul Redmond

Publisher: Apress

ISBN: 1484221877

Category: Computers

Page: 247

View: 2059

Learn to write test-driven microservices, REST APIs, and web service APIs with PHP using the Lumen micro-framework, from the now popular Laravel family. This book shows you how testing APIs can help you write bullet-proof web application services and microservices. In the Lumen Programming Guide you will learn how to use Lumen—a micro-framework by Laravel—to write bullet-proof APIs. Lumen helps you write productive, maintainable APIs using modern application design. You will learn how to write fully-tested APIs and understand essential Lumen concepts used to build a solid foundation for writing API projects. What You Will Learn Maintain your API's database structure through built-in database migrations Write tests with factory data in a test database Respond with consistent data output in JSON Deal with PHP exceptions by using JSON responses Create, read, update, and delete REST resources Represent model associations in API responses Build a solid foundation for writing tests with PHPUnit and Mockery Validate data Who This Book Is For PHP developers with no Laravel experience. Only a basic understanding of HTTP and writing PHP applications is needed to get started.
Computers

Complete Guide to Open Source Big Data Stack

Author: Michael Frampton

Publisher: Apress

ISBN: 1484221494

Category: Computers

Page: 365

View: 2324

See a Mesos-based big data stack created and the components used. You will use currently available Apache full and incubating systems. The components are introduced by example and you learn how they work together. In the Complete Guide to Open Source Big Data Stack, the author begins by creating a private cloud and then installs and examines Apache Brooklyn. After that, he uses each chapter to introduce one piece of the big data stack—sharing how to source the software and how to install it. You learn by simple example, step by step and chapter by chapter, as a real big data stack is created. The book concentrates on Apache-based systems and shares detailed examples of cloud storage, release management, resource management, processing, queuing, frameworks, data visualization, and more. What You’ll Learn Install a private cloud onto the local cluster using Apache cloud stack Source, install, and configure Apache: Brooklyn, Mesos, Kafka, and Zeppelin See how Brooklyn can be used to install Mule ESB on a cluster and Cassandra in the cloud Install and use DCOS for big data processing Use Apache Spark for big data stack data processing Who This Book Is For Developers, architects, IT project managers, database administrators, and others charged with developing or supporting a big data system. It is also for anyone interested in Hadoop or big data, and those experiencing problems with data size.
Computers

Spark: The Definitive Guide

Big Data Processing Made Simple

Author: Bill Chambers,Matei Zaharia

Publisher: "O'Reilly Media, Inc."

ISBN: 1491912294

Category: Computers

Page: 606

View: 7072

Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark’s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Computers

Advanced Analytics with Spark

Patterns for Learning from Data at Scale

Author: Sandy Ryza,Uri Laserson,Sean Owen,Josh Wills

Publisher: "O'Reilly Media, Inc."

ISBN: 1491972904

Category: Computers

Page: 280

View: 5356

In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming. You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—including classification, clustering, collaborative filtering, and anomaly detection—to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find the book’s patterns useful for working on your own data applications. With this book, you will: Familiarize yourself with the Spark programming model Become comfortable within the Spark ecosystem Learn general approaches in data science Examine complete implementations that analyze large public data sets Discover which machine learning tools make sense for particular problems Acquire code that can be adapted to many uses
Literary Collections

Poetry: An Introduction

Author: Michael Meyer

Publisher: Bedford/St. Martin's

ISBN: 9781457607301

Category: Literary Collections

Page: 864

View: 2861

Flexible enough for any poetry course, this text is designed to make your students lifelong lovers of poetry. It combines classic poetry with today’s hippest verse, mixing in lots of contemporary life, humor, and universal themes. In-depth chapters on authors such as Emily Dickinson and Billy Collins reveal the real-life contexts in which poets create. There is also plenty of support for students — with thorough chapters on the poetic elements, six sensible chapters on critical reading and writing, and many helpful sample close readings, writing assignments, and student papers.
Computers

Learning Akka

Author: Jason Goodwin

Publisher: Packt Publishing Ltd

ISBN: 1784393541

Category: Computers

Page: 274

View: 8167

Build fault tolerant concurrent and distributed applications with Akka About This Book Build networked applications that self-heal Scale out your applications to handle more traffic faster An easy-to-follow guide with a number of examples to ensure you get the best start with Akka Who This Book Is For This book is intended for beginner to intermediate Java or Scala developers who want to build applications to serve the high-scale user demands in computing today. If you need your applications to handle the ever-growing user bases and datasets with high performance demands, then this book is for you. Learning Akka will let you do more for your users with less code and less complexity, by building and scaling your networked applications with ease. What You Will Learn Use Akka to overcome the challenges of concurrent programming Resolve the issues faced in distributed computing with the help of Akka Scale applications to serve a high number of concurrent users Make your system fault-tolerant with self-healing applications Provide a timely response to users with easy concurrency Reduce hardware costs by building more efficient multi-user applications Maximise network efficiency by scaling it In Detail Software today has to work with more data, more users, more cores, and more servers than ever. Akka is a distributed computing toolkit that enables developers to build correct concurrent and distributed applications using Java and Scala with ease, applications that scale across servers and respond to failure by self-healing. As well as simplifying development, Akka enables multiple concurrency development patterns with particular support and architecture derived from Erlang's concept of actors (lightweight concurrent entities). Akka is written in Scala, which has become the programming language of choice for development on the Akka platform. Learning Akka aims to be a comprehensive walkthrough of Akka. This book will take you on a journey through all the concepts of Akka that you need in order to get started with concurrent and distributed applications and even build your own. Beginning with the concept of Actors, the book will take you through concurrency in Akka. Moving on to networked applications, this book will explain the common pitfalls in these difficult problem areas while teaching you how to use Akka to overcome these problems with ease. The book is an easy to follow example-based guide that will strengthen your basic knowledge of Akka and aid you in applying the same to real-world scenarios. Style and approach An easy-to-follow, example-based guide that will take you through building several networked-applications that work together while you are learning concurrent and distributed computing concepts. Each topic is explained while showing you how to design with Akka and how it is used to overcome common problems in applications. By showing Akka in context to the problems, it will help you understand what the common problems are in distributed applications and how to overcome them.
Computers

Programming Scala

Scalability = Functional Programming + Objects

Author: Dean Wampler,Alex Payne

Publisher: "O'Reilly Media, Inc."

ISBN: 1491950153

Category: Computers

Page: 598

View: 9312

Get up to speed on Scala, the JVM language that offers all the benefits of a modern object model, functional programming, and an advanced type system. Packed with code examples, this comprehensive book shows you how to be productive with the language and ecosystem right away, and explains why Scala is ideal for today's highly scalable, data-centric applications that support concurrency and distribution. This second edition covers recent language features, with new chapters on pattern matching, comprehensions, and advanced functional programming. You’ll also learn about Scala’s command-line tools, third-party tools, libraries, and language-aware plugins for editors and IDEs. This book is ideal for beginning and advanced Scala developers alike. Program faster with Scala’s succinct and flexible syntax Dive into basic and advanced functional programming (FP) techniques Build killer big-data apps, using Scala’s functional combinators Use traits for mixin composition and pattern matching for data extraction Learn the sophisticated type system that combines FP and object-oriented programming concepts Explore Scala-specific concurrency tools, including Akka Understand how to develop rich domain-specific languages Learn good design techniques for building scalable and robust Scala applications
Computers

Akka in Action

Author: Raymond Roestenburg,Rob Bakker,Rob Williams

Publisher: Manning Publications

ISBN: 9781617291012

Category: Computers

Page: 475

View: 5294

Summary Akka in Action is a comprehensive tutorial on building message-oriented systems using Akka. The book takes a hands-on approach, where each new concept is followed by an example that shows you how it works, how to implement the code, and how to (unit) test it. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Akka makes it relatively easy to build applications in the cloud or on devices with many cores that efficiently use the full capacity of the computing power available. It's a toolkit that provides an actor programming model, a runtime, and required support tools for building scalable applications. About the Book Akka in Action shows you how to build message-oriented systems with Akka. This comprehensive, hands-on tutorial introduces each concept with a working example. You'll start with the big picture of how Akka works, and then quickly build and deploy a fully functional REST service out of actors. You'll explore test-driven development and deploying and scaling fault-tolerant systems. After mastering the basics, you'll discover how to model immutable messages, implement domain models, and apply techniques like event sourcing and CQRS. You'l also find a tutorial on building streaming applications using akka-stream and akka-http. Finally, you'l get practical advice on how to customize and extend your Akka system. What's Inside Getting concurrency right Testing and performance tuning Clustered and cloud-based applications Covers Akka version 2.4 About the Reader This book assumes that you're comfortable with Java and Scala. No prior experience with Akka required. About the Authors A software craftsman and architect, Raymond Roestenburg is an Akka committer. Rob Bakker specializes in concurrent back-end systems and systems integration. Rob Williams has more than 20 years of product development experience. Table of Contents Introducing Akka Up and running Test-driven development with actors Fault tolerance Futures Your first distributed Akka app Configuration, logging, and deployment Structural patterns for actors Routing messages Message channels Finite-state machines and agents System integration Streaming Clustering Actor persistence Performance tips Looking ahead
Computers

Building Data Streaming Applications with Apache Kafka

Author: Manish Kumar,Chanchal Singh

Publisher: Packt Publishing Ltd

ISBN: 1787287637

Category: Computers

Page: 278

View: 1229

Design and administer fast, reliable enterprise messaging systems with Apache Kafka About This Book Build efficient real-time streaming applications in Apache Kafka to process data streams of data Master the core Kafka APIs to set up Apache Kafka clusters and start writing message producers and consumers A comprehensive guide to help you get a solid grasp of the Apache Kafka concepts in Apache Kafka with pracitcalpractical examples Who This Book Is For If you want to learn how to use Apache Kafka and the different tools in the Kafka ecosystem in the easiest possible manner, this book is for you. Some programming experience with Java is required to get the most out of this book What You Will Learn Learn the basics of Apache Kafka from scratch Use the basic building blocks of a streaming application Design effective streaming applications with Kafka using Spark, Storm &, and Heron Understand the importance of a low -latency , high- throughput, and fault-tolerant messaging system Make effective capacity planning while deploying your Kafka Application Understand and implement the best security practices In Detail Apache Kafka is a popular distributed streaming platform that acts as a messaging queue or an enterprise messaging system. It lets you publish and subscribe to a stream of records, and process them in a fault-tolerant way as they occur. This book is a comprehensive guide to designing and architecting enterprise-grade streaming applications using Apache Kafka and other big data tools. It includes best practices for building such applications, and tackles some common challenges such as how to use Kafka efficiently and handle high data volumes with ease. This book first takes you through understanding the type messaging system and then provides a thorough introduction to Apache Kafka and its internal details. The second part of the book takes you through designing streaming application using various frameworks and tools such as Apache Spark, Apache Storm, and more. Once you grasp the basics, we will take you through more advanced concepts in Apache Kafka such as capacity planning and security. By the end of this book, you will have all the information you need to be comfortable with using Apache Kafka, and to design efficient streaming data applications with it. Style and approach A step-by –step, comprehensive guide filled with practical and real- world examples
Computers

Learning Spark Streaming

Author: Francois Garillot,Gerard Maas

Publisher: O'Reilly Media

ISBN: 9781491944240

Category: Computers

Page: 300

View: 6459

To build analytics tools that provide faster insights, knowing how to process data in real time is a must, and moving from batch processing to stream processing is absolutely required. Fortunately, the Spark in-memory framework/platform for processing data has added an extension devoted to fault-tolerant stream processing: Spark Streaming. If you're familiar with Apache Spark and want to learn how to implement it for streaming jobs, this practical book is a must. Understand how Spark Streaming fits in the big picture Learn core concepts such as Spark RDDs, Spark Streaming clusters, and the fundamentals of a DStream Discover how to create a robust deployment Dive into streaming algorithmics Learn how to tune, measure, and monitor Spark Streaming

Streaming Architecture

New Designs Using Apache Kafka and Mapr Streams

Author: Ted Dunning,Ellen Friedman, M.D.

Publisher: "O'Reilly Media, Inc."

ISBN: 149195390X

Category:

Page: 120

View: 2426

More and more data-driven companies are looking to adopt stream processing and streaming analytics. With this concise ebook, you'll learn best practices for designing a reliable architecture that supports this emerging big-data paradigm. Authors Ted Dunning and Ellen Friedman (Real World Hadoop) help you explore some of the best technologies to handle stream processing and analytics, with a focus on the upstream queuing or message-passing layer. To illustrate the effectiveness of these technologies, this book also includes specific use cases. Ideal for developers and non-technical people alike, this book describes: Key elements in good design for streaming analytics, focusing on the essential characteristics of the messaging layerNew messaging technologies, including Apache Kafka and MapR Streams, with links to sample codeTechnology choices for streaming analytics: Apache Spark Streaming, Apache Flink, Apache Storm, and Apache ApexHow stream-based architectures are helpful to support microservicesSpecific use cases such as fraud detection and geo-distributed data streams Ted Dunning is Chief Applications Architect at MapR Technologies, and active in the open source community. He currently serves as VP for Incubator at the Apache Foundation, as a champion and mentor for a large number of projects, and as committer and PMC member of the Apache ZooKeeper and Drill projects. Ted is on Twitter as @ted_dunning. Ellen Friedman, a committer for the Apache Drill and Apache Mahout projects, is a solutions consultant and well-known speaker and author, currently writing mainly about big data topics. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics. Ellen is on Twitter as @Ellen_Friedman.
Computers

Expert Hadoop Administration

Managing, Tuning, and Securing Spark, YARN, and HDFS

Author: Sam R. Alapati

Publisher: Addison-Wesley Professional

ISBN: 0134703383

Category: Computers

Page: 848

View: 4829

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. The Comprehensive, Up-to-Date Apache Hadoop Administration Handbook and Reference “Sam Alapati has worked with production Hadoop clusters for six years. His unique depth of experience has enabled him to write the go-to resource for all administrators looking to spec, size, expand, and secure production Hadoop clusters of any size.” —Paul Dix, Series Editor In Expert Hadoop® Administration, leading Hadoop administrator Sam R. Alapati brings together authoritative knowledge for creating, configuring, securing, managing, and optimizing production Hadoop clusters in any environment. Drawing on his experience with large-scale Hadoop administration, Alapati integrates action-oriented advice with carefully researched explanations of both problems and solutions. He covers an unmatched range of topics and offers an unparalleled collection of realistic examples. Alapati demystifies complex Hadoop environments, helping you understand exactly what happens behind the scenes when you administer your cluster. You’ll gain unprecedented insight as you walk through building clusters from scratch and configuring high availability, performance, security, encryption, and other key attributes. The high-value administration skills you learn here will be indispensable no matter what Hadoop distribution you use or what Hadoop applications you run. Understand Hadoop’s architecture from an administrator’s standpoint Create simple and fully distributed clusters Run MapReduce and Spark applications in a Hadoop cluster Manage and protect Hadoop data and high availability Work with HDFS commands, file permissions, and storage management Move data, and use YARN to allocate resources and schedule jobs Manage job workflows with Oozie and Hue Secure, monitor, log, and optimize Hadoop Benchmark and troubleshoot Hadoop