Mathematics

Differential Geometry of Curves and Surfaces

Author: Manfredo P. do Carmo

Publisher: Courier Dover Publications

ISBN:

Category: Mathematics

Page: 512

View: 861

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.
Mathematics

Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition

Author: mary Gray

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 1088

View: 129

The Second Edition combines a traditional approach with the symbolic manipulation abilities of Mathematica to explain and develop the classical theory of curves and surfaces. You will learn to reproduce and study interesting curves and surfaces - many more than are included in typical texts - using computer methods. By plotting geometric objects and studying the printed result, teachers and students can understand concepts geometrically and see the effect of changes in parameters. Modern Differential Geometry of Curves and Surfaces with Mathematica explains how to define and compute standard geometric functions, for example the curvature of curves, and presents a dialect of Mathematica for constructing new curves and surfaces from old. The book also explores how to apply techniques from analysis. Although the book makes extensive use of Mathematica, readers without access to that program can perform the calculations in the text by hand. While single- and multi-variable calculus, some linear algebra, and a few concepts of point set topology are needed to understand the theory, no computer or Mathematica skills are required to understand the concepts presented in the text. In fact, it serves as an excellent introduction to Mathematica, and includes fully documented programs written for use with Mathematica. Ideal for both classroom use and self-study, Modern Differential Geometry of Curves and Surfaces with Mathematica has been tested extensively in the classroom and used in professional short courses throughout the world.
Mathematics

Differential Geometry of Curves and Surfaces

Author: Thomas F. Banchoff

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 414

View: 554

Differential Geometry of Curves and Surfaces, Second Edition takes both an analytical/theoretical approach and a visual/intuitive approach to the local and global properties of curves and surfaces. Requiring only multivariable calculus and linear algebra, it develops students’ geometric intuition through interactive computer graphics applets supported by sound theory. The book explains the reasons for various definitions while the interactive applets offer motivation for certain definitions, allow students to explore examples further, and give a visual explanation of complicated theorems. The ability to change parametric curves and parametrized surfaces in an applet lets students probe the concepts far beyond what static text permits. New to the Second Edition Reworked presentation to make it more approachable More exercises, both introductory and advanced New section on the application of differential geometry to cartography Additional investigative project ideas Significantly reorganized material on the Gauss–Bonnet theorem Two new sections dedicated to hyperbolic and spherical geometry as applications of intrinsic geometry A new chapter on curves and surfaces in Rn Suitable for an undergraduate-level course or self-study, this self-contained textbook and online software applets provide students with a rigorous yet intuitive introduction to the field of differential geometry. The text gives a detailed introduction of definitions, theorems, and proofs and includes many types of exercises appropriate for daily or weekly assignments. The applets can be used for computer labs, in-class illustrations, exploratory exercises, or self-study aids.
Mathematics

A Treatise on the Differential Geometry of Curves and Surfaces

Author: Luther Pfahler Eisenhart

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 474

View: 100

Created especially for graduate students by a leading writer on mathematics, this introduction to the geometry of curves and surfaces concentrates on problems that students will find most helpful.
Mathematics

Elementary Differential Geometry, Revised 2nd Edition

Author: Barrett O'Neill

Publisher: Elsevier

ISBN:

Category: Mathematics

Page: 520

View: 814

Written primarily for students who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Revised 2nd Edition, provides an introduction to the geometry of curves and surfaces. The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text. Over 36,000 copies sold worldwide Accessible, practical yet rigorous approach to a complex topic--also suitable for self-study Extensive update of appendices on Mathematica and Maple software packages Thorough streamlining of second edition's numbering system Fuller information on solutions to odd-numbered problems Additional exercises and hints guide students in using the latest computer modeling tools

Differential Geometry of Curves and Surfaces

Author: Masaaki Umehara

Publisher: World Scientific Publishing Company

ISBN:

Category:

Page: 328

View: 184

This engrossing volume on curve and surface theories is the result of many years of experience the authors have had with teaching the most essential aspects of this subject. The first half of the text is suitable for a university-level course, without the need for referencing other texts, as it is completely self-contained. More advanced material in the second half of the book, including appendices, also serves more experienced students well. Furthermore, this text is also suitable for a seminar for graduate students, and for self-study. It is written in a robust style that gives the student the opportunity to continue his study at a higher level beyond what a course would usually offer. Further material is included, for example, closed curves, enveloping curves, curves of constant width, the fundamental theorem of surface theory, constant mean curvature surfaces, and existence of curvature line coordinates. Surface theory from the viewpoint of manifolds theory is explained, and encompasses higher level material that is useful for the more advanced student. This includes, but is not limited to, indices of umbilics, properties of cycloids, existence of conformal coordinates, and characterizing conditions for singularities. In summary, this textbook succeeds in elucidating detailed explanations of fundamental material, where the most essential basic notions stand out clearly, but does not shy away from the more advanced topics needed for research in this field. It provides a large collection of mathematically rich supporting topics. Thus, it is an ideal first textbook in this field. Request Inspection Copy
Mathematics

Differential Geometry

Author: Wolfgang Kühnel

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 380

View: 525

Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.
Mathematics

Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition

Author: Elsa Abbena

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 1016

View: 102

Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
Mathematics

Lectures on Classical Differential Geometry

Author: Dirk Jan Struik

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 232

View: 459

Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.