Performance Analysis of Combined Cycle Power Plants: A Case Study

Author:

Publisher:

ISBN:

Category:

Page:

View: 985

Abstract: Nowadays the difference between the supply and demand of energy continuously rises. Thus finding new energy resources and also using present resources more efficiently are the key concepts of the new century. One of the ways to use energy resources more efficient is to produce electrical energy from combined cycle power plants. In order to maintain the efficient operating conditions of the plants, performing performance analysis is a requirement. In this study a performance analysis of an operating power plant is performed with actual operating data acquired from power plant control unit. The analysis is performed by using first and second law thermodynamics. Energy and exergy efficiencies of the each component of the power plant system are calculated and also parametric analysis is performed. After applying first law and second law of thermodynamics, energy and exergy efficiencies of the combined cycle power plant are found as 56% and 50.04% respectively and it is found that combustion chamber has the most exergy destruction rate among the system components. According to the calculation results, improvement and modification suggestions are presented.
Technology & Engineering

13th International Symposium on Process SystemsEngineering – PSE 2018, July 1-5 2018

Author: Mario R. Eden

Publisher: Elsevier

ISBN:

Category: Technology & Engineering

Page: 2602

View: 299

Process Systems Engineering brings together the international community of researchers and engineers interested in computing-based methods in process engineering. This conference highlights the contributions of the PSE community towards the sustainability of modern society and is based on the 13th International Symposium on Process Systems Engineering PSE 2018 event held San Diego, CA, July 1-5 2018. The book contains contributions from academia and industry, establishing the core products of PSE, defining the new and changing scope of our results, and future challenges. Plenary and keynote lectures discuss real-world challenges (globalization, energy, environment and health) and contribute to discussions on the widening scope of PSE versus the consolidation of the core topics of PSE. Highlights how the Process Systems Engineering community contributes to the sustainability of modern society Establishes the core products of Process Systems Engineering Defines the future challenges of Process Systems Engineering
Technology & Engineering

Conversion of Coal-Fired Power Plants to Cogeneration and Combined-Cycle

Author: Ryszard Bartnik

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 154

View: 230

Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. The authors analyze the optimum selection of the structure of heat exchangers in a 370 MW power block, the structure of heat recovery steam generators and gas turbines. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle also addresses the problems of converting existing power plants to dual-fuel gas-steam combined-cycle technologies coupled with parallel systems. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle is an informative monograph written for researchers, postgraduate students and policy makers in power engineering.
Business & Economics

Thermal Power Plant Performance Analysis

Author: Gilberto Francisco Martha de Souza

Publisher: Springer Science & Business Media

ISBN:

Category: Business & Economics

Page: 287

View: 531

This book presents reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement.
Combined cycle power plants

Modeling and Performance Enhancements of a Gas Turbine Combined Cycle Power Plant

Author: Thamir Khalil Ibrahim

Publisher:

ISBN:

Category: Combined cycle power plants

Page: 254

View: 834

This thesis deals with modelling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of green environment. These requirements given way the long time governing authority of steam turbine (ST) in the world power generation, and gas turbine (GT) and its combined cycle (CCGT) will replace it. Therefore, it is necessary to predict the characteristics of the CCGT system and optimize its operating strategy by developing a simulation system. Several configurations of the GT and CCGT plants systems are proposed by thermal analysis. The integrated model and simulation code for exploiting the performance of gas turbine and CCGT power plant are developed utilizing MATLAB code. New strategies for GT and CCGT power plant's operational modelling and optimizations are suggested for power plant operation, to improve overall performance. The effect of various enhancing strategies on the performance of the CCGT power plant (two-shaft, intercooler, regenerative, reheat, and multi-pressure heat recovery steam generator (HRSG)) based on the real GT and CCGT power plants. An extensive thermodynamic analysis of the modifications of the most common configuration's enhancements has been carried out. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. The simulating results show that the reheated GT has a higher power (388MW) while the higher thermal efficiency occurs in the regenerative GT (52%) with optimal pressure ratio and turbine inlet temperature. The performance enhancing strategies results show that the higher power output occurs in the intercooler-reheat GT strategy (404MW). Furthermore, the higher thermal efficiency (56.9%) and lower fuel consumption (0.13kg/kWh) occur in the intercooler-regenerative-reheat GT strategy. The analyses of the HRSG configurations show that the maximum power output (1238MW) occurred in the supplementary triple pressure with reheat CCGT while the overall efficiency was about 56.6%. The intercooler-reheat CCGT strategy has higher power output (1637MW) and the higher overall thermal efficiency (59.4%) and lower fuel consumption (0.047kg/kWh) occur with the regenerative-reheat CCGT strategy. The simulation result shows that the proposed GT system improved 19% of thermal efficiency and 22% of power output. In addition, the proposed CCGT system improved 4.6% of thermal efficiency for and 22.5% of power output. The optimization result shows that the optimum power (1280MW) and the overall thermal efficiency (65%) of the supplementary triple pressure with reheat CCGT. Therefore, the optimization procedure is reasonably accurate and efficient. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT and CCGT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the CCGT plants. The energy and exergy analysis models for the GT and CCGT plants are highly recommended for predicting them performance based on inlet air cooling system.
Technology & Engineering

Handbook for Cogeneration and Combined Cycle Power Plants

Author: Meherwan P. Boyce

Publisher: American Society of Mechanical Engineers

ISBN:

Category: Technology & Engineering

Page: 557

View: 564

This useful reference covers all major aspects of power plant design, operation, and maintenance. It covers cycle optimization and reliability, technical details on sizing, plant layout, fuel selection, types of drives, and performance characteristics of all major components in a cogeneration or combined cycle power plant. The author discusses design, fabrication, installation, operation, and maintenance. Many illustrations, curves, and tables are used throughout the text. Special features include: Comparison of various energy systems; latest cycles and power augmentation techniques; reviews and benefits of the latest codes; detailed analysis of available equipment; descriptions of all major equipment in CCPP; techniques for improving plant reliability and maintainability; testing and plant evaluation techniques; and advantages and disadvantages of fuels.
Technology & Engineering

Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants

Author: Bahman Zohuri

Publisher: Springer

ISBN:

Category: Technology & Engineering

Page: 359

View: 493

Introduces the concept of combined cycles for next generation nuclear power plants, explaining how recent advances in gas turbines have made these systems increasingly desirable for efficiency gains and cost-of-ownership reduction. Promulgates modelling and analysis techniques to identify opportunities for increased thermodynamic efficiency and decreased water usage over current Light Water Reactor (LWR) systems. Examines all power conversion aspects, from the fluid exiting the reactor to energy releases into the environment, with special focus on heat exchangers and turbo-machinery. Provides examples of small projects to facilitate nuanced understanding of the theories and implementation of combined-cycle nuclear plants. This book explores combined cycle driven efficiency of new nuclear power plants and describes how to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The included studies are intended to identify paths for future work on next generation nuclear power plants (GEN-IV), leveraging advances in natural-gas-fired turbines that enable coupling salt-cooled, helium-cooled, and sodium-cooled reactors to a Nuclear Air-Brayton Combined Cycle (NACC). These reactors provide the option of operating base-load nuclear plants with variable electricity output to the grid using natural gas or stored heat to produce peak power. The author describes overall system architecture, components and detailed modelling results of Brayton-Rankine Combined Cycle power conversion systems and Recuperated Brayton Cycle systems, since they offer the highest overall energy conversion efficiencies. With ever-higher temperatures predicted in GEN-IV plants, this book’s investigation of potential avenues for thermodynamic efficiency gains will be of great interest to nuclear engineers and researchers, as well as power plant operators and students.
Business & Economics

Energy Audit

Author: Y. P. Abbi

Publisher: The Energy and Resources Institute (TERI)

ISBN:

Category: Business & Economics

Page: 288

View: 479

The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. Energy Audit of Thermal Power, Combined Cycle, and Cogeneration Plants attempts to refresh the fundamentals of the science and engineering of thermal power plants, and establishes its link with the real power plant performance data through case studies, and further developing techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.
Technology & Engineering

Combined Cycle Systems for Near-Zero Emission Power Generation

Author: Ashok D Rao

Publisher: Elsevier

ISBN:

Category: Technology & Engineering

Page: 360

View: 163

Combined cycle power plants are one of the most promising ways of improving fossil-fuel and biomass energy production. The combination of a gas and steam turbine working in tandem to produce power makes this type of plant highly efficient and allows for CO2 capture and sequestration before combustion. This book provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants. After introductory chapters on basic combined cycle power plant and advanced gas turbine design, the book reviews the main types of combined cycle system. Chapters discuss the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) and integrated gasification combined cycle (IGCC) as well as novel humid air cycle, oxy-combustion turbine cycle systems. The book also reviews pressurised fluidized bed combustion (PFBC), externally fired combined cycle (EFCC), hybrid fuel cell turbine (FC/GT), combined cycle and integrated solar combined cycle (ISCC) systems. The final chapter reviews techno-economic analysis of combined cycle systems. With its distinguished editor and international team of contributors, Combined cycle systems for near-zero emission power generation is a standard reference for both industry practitioners and academic researchers seeking to improve the efficiency and environmental impact of power plants. Provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants Introduces basic combined cycle power plant and advanced gas turbine design and reviews the main types of combined cycle systems Discusses the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) systems and integrated gasification combined cycle (IGCC) systems, as well as novel humid air cycle systems and oxy-combustion turbine cycle systems