Mathematics

Elementary Topics in Differential Geometry

Author: J. A. Thorpe

Publisher: Springer Science & Business Media

ISBN: 1461261538

Category: Mathematics

Page: 256

View: 9169

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.
Mathematics

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

Author: Kai L. Chung

Publisher: Springer-Verlag

ISBN: 3642670334

Category: Mathematics

Page: 346

View: 6561

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1
Mathematics

Elementare Differentialgeometrie

Author: Christian Bär

Publisher: Walter de Gruyter

ISBN: 3110224593

Category: Mathematics

Page: 356

View: 2590

This textbook presents an introduction to the differential geometry of curves and surfaces. This second, revised edition has been expanded to include solutions and applications in cartography. Topics include Euclidean geometry, curve theory, surface theory, curvature concepts, minimal surfaces, Riemann geometry and the Gauss-Bonnet theorem.
Technology & Engineering

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 5450

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang
Mathematics

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3658006153

Category: Mathematics

Page: 284

View: 1311

Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt.
Mathematics

Topics in Differential Geometry: A New Approach Using D-Differentiation

Author: Donal J. Hurley,Michael A. Vandyck

Publisher: Springer Science & Business Media

ISBN: 9781852334918

Category: Mathematics

Page: 173

View: 2276

This book is the first comprehensive and self-contained treatment of the new concept of D-differentiation aimed primarily at advanced graduate students and researchers in the fields of differential geometry, mathematics and mathematical physics.
Mathematics

Elementary Differential Geometry

Author: Christian Bär

Publisher: Cambridge University Press

ISBN: 0521896711

Category: Mathematics

Page: 317

View: 6391

This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.
Mathematics

Differential Geometry of Curves and Surfaces

Author: Kristopher Tapp

Publisher: Springer

ISBN: 3319397990

Category: Mathematics

Page: 366

View: 4757

This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.
Mathematics

Elementary Differential Geometry, Revised 2nd Edition

Author: Barrett O'Neill

Publisher: Elsevier

ISBN: 9780080505428

Category: Mathematics

Page: 520

View: 8682

Written primarily for students who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Revised 2nd Edition, provides an introduction to the geometry of curves and surfaces. The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text. Over 36,000 copies sold worldwide Accessible, practical yet rigorous approach to a complex topic--also suitable for self-study Extensive update of appendices on Mathematica and Maple software packages Thorough streamlining of second edition's numbering system Fuller information on solutions to odd-numbered problems Additional exercises and hints guide students in using the latest computer modeling tools
Mathematics

Elementary Differential Geometry

Author: A.N. Pressley

Publisher: Springer Science & Business Media

ISBN: 1848828918

Category: Mathematics

Page: 474

View: 9611

Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul>
Geometry, Differential

Applied Differential Geometry

A Modern Introduction

Author: N.A

Publisher: World Scientific

ISBN: 9812770720

Category: Geometry, Differential

Page: 1311

View: 9494

This graduate-level monographic textbook treats applied differential geometry from a modern scientific perspective. Co-authored by the originator of the worldOCOs leading human motion simulator OCo OC Human Biodynamics EngineOCO, a complex, 264-DOF bio-mechanical system, modeled by differential-geometric tools OCo this is the first book that combines modern differential geometry with a wide spectrum of applications, from modern mechanics and physics, via nonlinear control, to biology and human sciences. The book is designed for a two-semester course, which gives mathematicians a variety of applications for their theory and physicists, as well as other scientists and engineers, a strong theory underlying their models."
Technology & Engineering

Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers

Author: Hung Nguyen-Schäfer,Jan-Philip Schmidt

Publisher: Springer

ISBN: 3662484978

Category: Technology & Engineering

Page: 376

View: 4209

This book comprehensively presents topics, such as Dirac notation, tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. Additionally, two new chapters of Cartan differential forms and Dirac and tensor notations in quantum mechanics are added to this second edition. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors, differential geometry, and differential forms; and to apply them to the physical and engineering world. Many methods and applications are given in CFD, continuum mechanics, electrodynamics in special relativity, cosmology in the Minkowski four-dimensional spacetime, and relativistic and non-relativistic quantum mechanics. Tensors, differential geometry, differential forms, and Dirac notation are very useful advanced mathematical tools in many fields of modern physics and computational engineering. They are involved in special and general relativity physics, quantum mechanics, cosmology, electrodynamics, computational fluid dynamics (CFD), and continuum mechanics. The target audience of this all-in-one book primarily comprises graduate students in mathematics, physics, engineering, research scientists, and engineers.
Mathematics

Elementary Differential Geometry

Author: Barrett O'Neill

Publisher: Academic Press

ISBN: 148326811X

Category: Mathematics

Page: 422

View: 1711

Elementary Differential Geometry focuses on the elementary account of the geometry of curves and surfaces. The book first offers information on calculus on Euclidean space and frame fields. Topics include structural equations, connection forms, frame fields, covariant derivatives, Frenet formulas, curves, mappings, tangent vectors, and differential forms. The publication then examines Euclidean geometry and calculus on a surface. Discussions focus on topological properties of surfaces, differential forms on a surface, integration of forms, differentiable functions and tangent vectors, congruence of curves, derivative map of an isometry, and Euclidean geometry. The manuscript takes a look at shape operators, geometry of surfaces in E, and Riemannian geometry. Concerns include geometric surfaces, covariant derivative, curvature and conjugate points, Gauss-Bonnet theorem, fundamental equations, global theorems, isometries and local isometries, orthogonal coordinates, and integration and orientation. The text is a valuable reference for students interested in elementary differential geometry.
Mathematics

Lectures on Classical Differential Geometry

Author: Dirk Jan Struik

Publisher: Courier Corporation

ISBN: 9780486656090

Category: Mathematics

Page: 232

View: 8002

Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.
Mathematics

Differentialgeometrie

Author: Heinrich Brauner

Publisher: Springer-Verlag

ISBN: 3322897125

Category: Mathematics

Page: 424

View: 591

um das zur Lösung konkreter geometrischer Einzelfragen nötige Rüstzeug zu ver mitteln, ist auch stets die koordinatenmäßige Behandlung berücksichtigt. Verzichtet wurde auf den Differentialformenkalkül, doch wird der Leser keine Schwierigkeiten haben, sich diese für die moderne Differentialgeometrie wichtige Methode auf der Grundlage des Buches selbst anzueignen. In einer Einführung sollten nach meiner Ansicht nicht verschiedene methodische Ansätze verwendet werden. Der gebotene Stoff geht in Umfang und Inhalt über eine etwa vierstündige Vor lesung hinaus und gestattet den Anschluß eines weiterführenden Seminars. Die sorg fältig angebrachten zahlreichen Rückverweisungen ermöglichen es, verschiedenartige Lehrgänge aus dem Inhalt zusammen zu stellen. Freunde konkreter Geometrie wer den die Diskussionen im Anschluß an den induzierten Zusammenhang in KapitelS überschlagen, die Krümmungstheorien in Kapitel 6 nur für Hyperflächen behandeln und sich vor allem den 2-Flächen in Kapitel 7 zuwenden. Das andere Extrem ist die Auswahl eines Lehrgangs über differenzierbare Mannigfaltigkeiten und Riemannsche Geometrie; dabei kann man mit Kapitel 8 beginnen und die Rückverweisungen dazu verwenden, Beispiele für die eingeführten Begriffe bereitzustellen. Die Abschnitte 3. 3,4. 3,5. 5 und 6. 5 und das Kapitel 7 müssen nicht studiert werden, um jeweils nach folgende Abschnitte verstehen zu können, der Abschnitt 3. 5 wird erst in 8. 8 benötigt. Der Abschnitt 8. 8 ist unter Verwendung einzelner Rückverweisungen auch ohne die vorhergehenden Abschnitte des Kapitels 8 lesbar. Jedem Kapitel ist eine kurze Inhaltsübersicht vorangestellt, und jeder Abschnitt schließt mit einer Sammlung von Aufgaben zur Einübung des behandelten Stoffes.
Mathematics

Differential Geometry of Curves and Surfaces

A Concise Guide

Author: Victor Andreevich Toponogov

Publisher: Springer Science & Business Media

ISBN: 9780817643843

Category: Mathematics

Page: 206

View: 7248

Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels
Science

Differential Geometry and Mathematical Physics

Part I. Manifolds, Lie Groups and Hamiltonian Systems

Author: Gerd Rudolph,Matthias Schmidt

Publisher: Springer Science & Business Media

ISBN: 9400753454

Category: Science

Page: 762

View: 1624

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
Mathematics

Metric Structures in Differential Geometry

Author: Gerard Walschap

Publisher: Springer Science & Business Media

ISBN: 0387218262

Category: Mathematics

Page: 229

View: 3239

This book offers an introduction to the theory of differentiable manifolds and fiber bundles. It examines bundles from the point of view of metric differential geometry: Euclidean bundles, Riemannian connections, curvature, and Chern-Weil theory are discussed, including the Pontrjagin, Euler, and Chern characteristic classes of a vector bundle. These concepts are illustrated in detail for bundles over spheres.
Mathematics

Lectures on Differential Geometry

Author: Shlomo Sternberg

Publisher: American Mathematical Soc.

ISBN: 0821813854

Category: Mathematics

Page: 442

View: 6612

This book is based on lectures given at Harvard University during the academic year 1960-1961. The presentation assumes knowledge of the elements of modern algebra (groups, vector spaces, etc.) and point-set topology and some elementary analysis. Rather than giving all the basic information or touching upon every topic in the field, this work treats various selected topics in differential geometry. The author concisely addresses standard material and spreads exercises throughout the text. His reprint has two additions to the original volume: a paper written jointly with V. Guillemin at the beginning of a period of intense interest in the equivalence problem and a short description from the author on results in the field that occurred between the first and the second printings.
Mathematics

Differential Geometry in the Large

Seminar Lectures New York University 1946 and Stanford University 1956

Author: Heinz Hopf

Publisher: Springer

ISBN: 3662215632

Category: Mathematics

Page: 189

View: 3897

These notes consist of two parts: 1) Selected Topics in Geometry, New York University 1946, Notes by Peter Lax. 2) Lectures on Differential Geometry in the Large, Stanford University 1956, Notes by J. W. Gray. They are reproduced here with no essential change. Heinz Hopf was a mathematician who recognized important mathema tical ideas and new mathematical phenomena through special cases. In the simplest background the central idea or the difficulty of a problem usually becomes crystal clear. Doing geometry in this fashion is a joy. Hopf's great insight allows this approach to lead to serious ma thematics, for most of the topics in these notes have become the star ting-points of important further developments. I will try to mention a few. It is clear from these notes that Hopf laid the emphasis on poly hedral differential geometry. Most of the results in smooth differen tial geometry have polyhedral counterparts, whose understanding is both important and challenging. Among recent works I wish to mention those of Robert Connelly on rigidity, which is very much in the spirit of these notes (cf. R. Connelly, Conjectures and open questions in ri gidity, Proceedings of International Congress of Mathematicians, Hel sinki 1978, vol. 1, 407-414 ) • A theory of area and volume of rectilinear'polyhedra based on de compositions originated with Bolyai and Gauss.