**Author**: Alan Jeffrey

**Publisher:** CRC Press

**ISBN:** 9781584884897

**Category:** Mathematics

**Page:** 896

**View:** 2599

Skip to content
# Free eBooks PDF

## Essentials Engineering Mathematics

First published in 1992, Essentials of Engineering Mathematics is a widely popular reference ideal for self-study, review, and fast answers to specific questions. While retaining the style and content that made the first edition so successful, the second edition provides even more examples, new material, and most importantly, an introduction to using two of the most prevalent software packages in engineering: Maple and MATLAB. Specifically, this edition includes: Introductory accounts of Maple and MATLAB that offer a quick start to using symbolic software to perform calculations, explore the properties of functions and mathematical operations, and generate graphical output New problems involving the mean value theorem for derivatives Extension of the account of stationary points of functions of two variables The concept of the direction field of a first-order differential equation Introduction to the delta function and its use with the Laplace transform The author includes all of the topics typically covered in first-year undergraduate engineering mathematics courses, organized into short, easily digestible sections that make it easy to find any subject of interest. Concise, right-to-the-point exposition, a wealth of examples, and extensive problem sets at the end each chapter--with answers at the end of the book--combine to make Essentials of Engineering Mathematics, Second Edition ideal as a supplemental textbook, for self-study, and as a quick guide to fundamental concepts and techniques.
## Engineering Mathematics

Now in its eighth edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for a range of Level 2 and 3 engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae and multiple choice tests.
## Basic Engineering Mathematics

Introductory mathematics written specifically for students new to engineering Now in its sixth edition, Basic Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for introductory level engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae, multiple choice tests, full solutions for all 1,600 further questions contained within the practice exercises, and biographical information on the 25 famous mathematicians and engineers referenced throughout the book. The companion website for this title can be accessed from www.routledge.com/cw/bird
## Higher Engineering Mathematics

Now in its sixth edition, Higher Engineering Mathematics is an established textbook that has helped many thousands of students to gain exam success. John Bird's approach is ideal for students from a wide range of academic backgrounds, and can be worked through at the student's own pace. Mathematical theories are examined in the simplest of terms, supported by practical examples and applications from a wide variety of engineering disciplines, to ensure that the reader can apply theory to practice. This extensive and thorough topic coverage makes this an ideal book for a range of university degree modules, foundation degrees, and HNC/D units. This new edition of Higher Engineering Mathematics has been further extended with topics specifically written to help first year engineering degree students and those following foundation degrees. New material has been added on logarithms and exponential functions, binary, octal and hexadecimal numbers, vectors and methods of adding alternating waveforms. This book caters specifically for the engineering mathematics units of the Higher National Engineering schemes from Edexcel, including the core unit Analytical methods for Engineers, and two optional units: Further Analytical Methods for Engineers and Engineering Mathematics, common to both the electrical/electronic engineering and mechanical engineering pathways. A mapping grid is included showing precisely which topics are required for the learning outcomes of each unit. Higher Engineering Mathematics contains examples, supported by 900 worked problems and 1760 further problems contained within exercises throughout the text. In addition, 19 revision tests, which are available to use as tests or as homework are included at regular intervals.
## Understanding Engineering Mathematics

Studying engineering, whether it is mechanical, electrical or civil relies heavily on an understanding of mathematics. This new textbook clearly demonstrates the relevance of mathematical principles and shows how to apply them to solve real-life engineering problems. It deliberately starts at an elementary level so that students who are starting from a low knowledge base will be able to quickly get up to the level required. Students who have not studied mathematics for some time will find this an excellent refresher. Each chapter starts with the basics before gently increasing in complexity. A full outline of essential definitions, formulae, laws and procedures are introduced before real world situations, practicals and problem solving demonstrate how the theory is applied. Focusing on learning through practice, it contains examples, supported by 1,600 worked problems and 3,000 further problems contained within exercises throughout the text. In addition, 34 revision tests are included at regular intervals. An interactive companion website is also provided containing 2,750 further problems with worked solutions and instructor materials
## Engineering Mathematics Pocket Book

This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by students, technicians, scientists and engineers in day-to-day engineering practice. A practical and versatile reference source, now in its fourth edition, the layout has been changed and the book has been streamlined to ensure the information is even more quickly and readily available - making it a handy companion on-site, in the office as well as for academic study. It also acts as a practical revision guide for those undertaking BTEC Nationals, Higher Nationals and NVQs, where engineering mathematics is an underpinning requirement of the course. All the essentials of engineering mathematics - from algebra, geometry and trigonometry to logic circuits, differential equations and probability - are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on providing the practical tools needed to solve mathematical problems quickly and efficiently in engineering contexts. John Bird’s presentation of this core material puts all the answers at your fingertips.
## Engineering Mathematics with Examples and Applications

Engineering Mathematics with Examples and Applications provides a compact and concise primer in the field, starting with the foundations, and then gradually developing to the advanced level of mathematics that is necessary for all engineering disciplines. Therefore, this book's aim is to help undergraduates rapidly develop the fundamental knowledge of engineering mathematics. The book can also be used by graduates to review and refresh their mathematical skills. Step-by-step worked examples will help the students gain more insights and build sufficient confidence in engineering mathematics and problem-solving. The main approach and style of this book is informal, theorem-free, and practical. By using an informal and theorem-free approach, all fundamental mathematics topics required for engineering are covered, and readers can gain such basic knowledge of all important topics without worrying about rigorous (often boring) proofs. Certain rigorous proof and derivatives are presented in an informal way by direct, straightforward mathematical operations and calculations, giving students the same level of fundamental knowledge without any tedious steps. In addition, this practical approach provides over 100 worked examples so that students can see how each step of mathematical problems can be derived without any gap or jump in steps. Thus, readers can build their understanding and mathematical confidence gradually and in a step-by-step manner. Covers fundamental engineering topics that are presented at the right level, without worry of rigorous proofs Includes step-by-step worked examples (of which 100+ feature in the work) Provides an emphasis on numerical methods, such as root-finding algorithms, numerical integration, and numerical methods of differential equations Balances theory and practice to aid in practical problem-solving in various contexts and applications
## Newnes Engineering Mathematics Pocket Book

Newnes Engineering Mathematics Pocket Book is a uniquely versatile and practical tool for a wide range of engineers and students. All the essentials of engineering mathematics are covered, with clear explanations of key methods, and worked examples to illustrate them. Numerous tables and diagrams are provided, along with all the formulae you could need. The emphasis throughout the book is on providing the practical tools needed to solve mathematical problems quickly in engineering contexts. John Bird's presentation of this core material puts all the answers at your fingertips. The contents of this book have been carefully matched to the latest Further and Higher Education syllabuses so that it can also be used as a revision guide or a quick-access source of underpinning knowledge. Students on competence-based courses such as NVQs will find this approach particularly refreshing and practical. This book and its companion title Newnes Engineering Science Pocket Book provide the underpinning knowledge for the whole range of engineering communities catered for by the Newnes Pocket Book series. These related titles include: Newnes Mechanical Engineer's Pocket Book (Roger Timings) Newnes Electrical Pocket Book (E.A. Reeves) Newnes Electronic Engineer's Pocket Book (Joe Carr & Keith Brindley) Newnes Radio and RF Engineer's Pocket Book (Joe Carr & John Davies) Newnes Telecommunications Engineer's Pocket Book (Steve Winder) The contents of this book have been carefully mathced to the latest Further and Higher Education syllabuses so that it can also be used as a revision guide or a quick-access reference source of underpinning knowledge. Students on competence-based courses such as NVQs will find this approach particularly refreshing and practical. Previous editions of Newnes Engineering Mathematics Pocket Book were published under the title Newnes Mathematics Pocket Book for Engineers.
## Higher Engineering Mathematics, 7th ed

A practical introduction to the core mathematics principles required at higher engineering level John Bird’s approach to mathematics, based on numerous worked examples and interactive problems, is ideal for vocational students that require an advanced textbook. Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced mathematics engineering that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper level vocational courses. Now in its seventh edition, Engineering Mathematics has helped thousands of students to succeed in their exams. The new edition includes a section at the start of each chapter to explain why the content is important and how it relates to real life. It is also supported by a fully updated companion website with resources for both students and lecturers. It has full solutions to all 1900 further questions contained in the 269 practice exercises.
## Mathematics for Civil Engineers

Mathematics for Civil Engineers provides a concise introduction to the fundamental concepts of mathematics that are closely related to civil engineering. By using an informal and theorem-free approach with more than 150 step-by-step examples, all the key mathematical concepts and techniques are introduced. Thus users of this textbook will gain the basic knowledge and understanding required for their work. Exercises are included In each chapter to give readers the opportunity to apply their new knowledge; the answers to these dozens of exercises are provided at the end of the book. Topics include functions, trigonometrical functions, equations, polynomials, vectors and matrices, eigenvalues and eigenvectors, tensors, differentiation, integration, advanced calculus such as double integrals and special integrals, complex numbers, differential equations, Fourier series and transforms, Laplace transforms, probability and statistics, curve-fitting and linear regression. Advanced topics include partial differential equations and integral equations, root-finding algorithms for nonlinear equations, numerical methods for solving differential equations, optimization and nonlinear optimization. Mathematics for Civil Engineers allows undergraduates and civil engineers to develop a necessary, essential, knowledge of engineering mathematics. Many of the worked examples are chosen to reflect situations and problems in civil engineering practise. Examples include moment of inertia, second moment of area, beam buckling, harmonic motion and forced harmonic motion, elasticity, transfer function, waves and heat transfer, maximization and minimization and many others. All these topics and examples will help readers to gain more insight and to build sufficient confidence in applying engineering mathematics for problem solving in real engineering situations. This book may also be useful for practitioners in other engineering disciplines to improve their basic mathematical skills.
## Higher mathematics for engineering students

## Essential Mathematical Methods for Physicists

This adaptation of Arfken and Weber's bestselling 'Mathematical Methods for Physicists' is a comprehensive, accessible reference for using mathematics to solve physics problems. Introductions and review material provide context and extra support for key ideas, with detailed examples.
## Essentials of Math Methods for Physicists

Essentials of Math Methods for Physicists aims to guide the student in learning the mathematical language used by physicists by leading them through worked examples and then practicing problems. The pedagogy is that of introducing concepts, designing and refining methods and practice them repeatedly in physics examples and problems. Geometric and algebraic approaches and methods are included and are more or less emphasized in a variety of settings to accommodate different learning styles of students. Comprised of 19 chapters, this book begins with an introduction to the basic concepts of vector algebra and vector analysis and their application to classical mechanics and electrodynamics. The next chapter deals with the extension of vector algebra and analysis to curved orthogonal coordinates, again with applications from classical mechanics and electrodynamics. These chapters lay the foundations for differential equations, variational calculus, and nonlinear analysisin later discussions. High school algebra of one or two linear equations is also extended to determinants and matrix solutions of general systems of linear equations, eigenvalues and eigenvectors, and linear transformations in real and complex vector spaces. The book also considers probability and statistics as well as special functions and Fourier series. Historical remarks are included that describe some physicists and mathematicians who introduced the ideas and methods that were perfected by later generations to the tools routinely used today. This monograph is intended to help undergraduate students prepare for the level of mathematics expected in more advanced undergraduate physics and engineering courses.
## Essential Mathematical Methods for the Physical Sciences

The mathematical methods that physical scientists need for solving substantial problems in their fields of study are set out clearly and simply in this tutorial-style textbook. Students will develop problem-solving skills through hundreds of worked examples, self-test questions and homework problems. Each chapter concludes with a summary of the main procedures and results and all assumed prior knowledge is summarized in one of the appendices. Over 300 worked examples show how to use the techniques and around 100 self-test questions in the footnotes act as checkpoints to build student confidence. Nearly 400 end-of-chapter problems combine ideas from the chapter to reinforce the concepts. Hints and outline answers to the odd-numbered problems are given at the end of each chapter, with fully-worked solutions to these problems given in the accompanying Student Solutions Manual. Fully-worked solutions to all problems, password-protected for instructors, are available at www.cambridge.org/essential.
## Advanced Engineering Mathematics

Key features * A unique technique-oriented approach takes the student through the mathematics in a highly accessible way * Comprehensive coverage of all topics required by undergraduates at advanced levels of mathematics in engineering and science * Hundreds of worked examples and progressively more challenging exercises * Ideal either as part of a course or for self-study
## Basic Engineering Mathematics, 6th Ed

Introductory mathematics written specifically for students new to engineering Now in its sixth edition, Basic Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for introductory level engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae, multiple choice tests, full solutions for all 1,600 further questions contained within the practice exercises, and biographical information on the 25 famous mathematicians and engineers referenced throughout the book. The companion website for this title can be accessed from www.routledge.com/cw/bird
## Engineering Mathematics

Engineering Mathematics is the best-selling introductory mathematics text for students on science and engineering degree and pre-degree courses. Sales of previous editions stand at more than half a million copies. It is suitable for classroom use and self-study. Its unique programmed approach takes students through the mathematics they need in a step-by-step fashion with a wealth of examples and exercises. The book is divided into two sections with the Foundation section starting at Level 0 of the IEng syllabus and the main section extending over all elements of a first year undergraduate course and into many second year courses. The book therefore suits a full range of abilities and levels of access. The Online Personal Tutor guides students through exercises in the same step-by-step fashion as the book, with hundreds of full workings to questions.
## Fundamental Engineering Mathematics

This student friendly workbook addresses mathematical topics using SONG - a combination of Symbolic, Oral, Numerical and Graphical approaches. The text helps to develop key skills, communication both written and oral, the use of information technology, problem solving and mathematical modelling. The overall structure aims to help students take responsibility for their own learning, by emphasizing the use of self-assessment, thereby enabling them to become critical, reflective and continuing learners – an essential skill in this fast-changing world. The material in this book has been successfully used by the authors over many years of teaching the subject at Sheffield Hallam University. Their SONG approach is somewhat broader than the traditionally symbolic based approach and readers will find it more in the same vein as the Calculus Reform movement in the USA. Addresses mathematical topics using SONG - a combination of Symbolic, Oral, Numerical and Graphical approaches Helps to develop key skills, communication both written and oral, the use of information technology, problem solving and mathematical modelling Encourages students to take responsibility for their own learning by emphasizing the use of self-assessment
## Essential MATLAB for Engineers and Scientists

Essential MATLAB for Engineers and Scientists, Sixth Edition, provides a concise, balanced overview of MATLAB's functionality that facilitates independent learning, with coverage of both the fundamentals and applications. The essentials of MATLAB are illustrated throughout, featuring complete coverage of the software's windows and menus. Program design and algorithm development are presented clearly and intuitively, along with many examples from a wide range of familiar scientific and engineering areas. This updated edition includes the latest MATLAB versions through 2016a, and is an ideal book for a first course on MATLAB, or for an engineering problem-solving course using MATLAB, as well as a self-learning tutorial for professionals and students expected to learn and apply MATLAB. Updated to include all the newer features through MATLAB R2016a Includes new chapter on complex variables analysis Presents a comparison of execution time between compiled and un-compiled code that includes examples Describes the new H2 graphics features
## Essentials of Error-Control Coding

Rapid advances in electronic and optical technology have enabled the implementation of powerful error-control codes, which are now used in almost the entire range of information systems with close to optimal performance. These codes and decoding methods are required for the detection and correction of the errors and erasures which inevitably occur in digital information during transmission, storage and processing because of noise, interference and other imperfections. Error-control coding is a complex, novel and unfamiliar area, not yet widely understood and appreciated. This book sets out to provide a clear description of the essentials of the subject, with comprehensive and up-to-date coverage of the most useful codes and their decoding algorithms. A practical engineering and information technology emphasis, as well as relevant background material and fundamental theoretical aspects, provides an in-depth guide to the essentials of Error-Control Coding. Provides extensive and detailed coverage of Block, Cyclic, BCH, Reed-Solomon, Convolutional, Turbo, and Low Density Parity Check (LDPC) codes, together with relevant aspects of Information Theory EXIT chart performance analysis for iteratively decoded error-control techniques Heavily illustrated with tables, diagrams, graphs, worked examples, and exercises Invaluable companion website features slides of figures, algorithm software, updates and solutions to problems Offering a complete overview of Error Control Coding, this book is an indispensable resource for students, engineers and researchers in the areas of telecommunications engineering, communication networks, electronic engineering, computer science, information systems and technology, digital signal processing and applied mathematics.

Just another PDF Download site

Mathematics

Mathematics

Mathematics

Technology & Engineering

Technology & Engineering

Mathematics

Mathematics

Mathematics

Juvenile Nonfiction

Technology & Engineering

Mathematics

Mathematics

Science

Science

Mathematics

Mathematics

Mathematics

Technology & Engineering

Technology & Engineering