Business & Economics

A First Course in Machine Learning, Second Edition

Author: Simon Rogers,Mark Girolami

Publisher: CRC Press

ISBN: 1498738567

Category: Business & Economics

Page: 427

View: 890

"A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC." —Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden "This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade." —Daniel Barbara, George Mason University, Fairfax, Virginia, USA "The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing ‘just in time’ the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts." —Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark "I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength...Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months." —David Clifton, University of Oxford, UK "The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book." —Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK "This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning...The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective." —Guangzhi Qu, Oakland University, Rochester, Michigan, USA
Computers

Machine Learning mit Python

Das Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning

Author: Sebastian Raschka

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958454240

Category: Computers

Page: 424

View: 9521

Maschinelles Lernen

Author: Ethem Alpaydın

Publisher: Oldenbourg Verlag

ISBN: 9783486581140

Category:

Page: 440

View: 8260

Unter maschinellem Lernen versteht man die kunstliche Generierung von Wissen aus Erfahrung. Das vorliegende Buch diskutiert Methoden aus den Bereichen Statistik, Mustererkennung etc. und versucht, die unterschiedlichen Ansatze zu kombinieren, um moglichst effiziente Losungen zu finden."

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 5347

Computers

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 2181

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.
Computers

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 7695

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.
Computers

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 3191

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.
Social Science

Leben 3.0

Mensch sein im Zeitalter Künstlicher Intelligenz

Author: Max Tegmark

Publisher: Ullstein Buchverlage

ISBN: 3843716706

Category: Social Science

Page: 528

View: 9861

Die Nobelpreis-Schmiede Massachusetts Institute of Technology ist der bedeutendste technologische Think Tank der USA. Dort arbeitet Professor Max Tegmark mit den weltweit führenden Entwicklern künstlicher Intelligenz zusammen, die ihm exklusive Einblicke in ihre Labors gewähren. Die Erkenntnisse, die er daraus zieht, sind atemberaubend und zutiefst verstörend zugleich. Neigt sich die Ära der Menschen dem Ende zu? Der Physikprofessor Max Tegmark zeigt anhand der neusten Forschung, was die Menschheit erwartet. Hier eine Auswahl möglicher Szenarien: - Eroberer: Künstliche Intelligenz übernimmt die Macht und entledigt sich der Menschheit mit Methoden, die wir noch nicht einmal verstehen. - Der versklavte Gott: Die Menschen bemächtigen sich einer superintelligenten künstlichen Intelligenz und nutzen sie, um Hochtechnologien herzustellen. - Umkehr: Der technologische Fortschritt wird radikal unterbunden und wir kehren zu einer prä-technologischen Gesellschaft im Stil der Amish zurück. - Selbstzerstörung: Superintelligenz wird nicht erreicht, weil sich die Menschheit vorher nuklear oder anders selbst vernichtet. - Egalitäres Utopia: Es gibt weder Superintelligenz noch Besitz, Menschen und kybernetische Organismen existieren friedlich nebeneinander. Max Tegmark bietet kluge und fundierte Zukunftsszenarien basierend auf seinen exklusiven Einblicken in die aktuelle Forschung zur künstlichen Intelligenz.
History

Die Macht der Gewohnheit: Warum wir tun, was wir tun

Author: Charles Duhigg

Publisher: ebook Berlin Verlag

ISBN: 3827070740

Category: History

Page: 416

View: 4170

Seit kurzem versuchen Hirnforscher, Verhaltenspsychologen und Soziologen gemeinsam neue Antworten auf eine uralte Frage zu finden: Warum tun wir eigentlich, was wir tun? Was genau prägt unsere Gewohnheiten? Anhand zahlreicher Beispiele aus der Forschung wie dem Alltag erzählt Charles Duhigg von der Macht der Routine und kommt dem Mechanismus, aber auch den dunklen Seiten der Gewohnheit auf die Spur. Er erklärt, warum einige Menschen es schaffen, über Nacht mit dem Rauchen aufzuhören (und andere nicht), weshalb das Geheimnis sportlicher Höchstleistung in antrainierten Automatismen liegt und wie sich die Anonymen Alkoholiker die Macht der Gewohnheit zunutze machen. Nicht zuletzt schildert er, wie Konzerne Millionen ausgeben, um unsere Angewohnheiten für ihre Zwecke zu manipulieren. Am Ende wird eines klar: Die Macht von Gewohnheiten prägt unser Leben weit mehr, als wir es ahnen.
Business & Economics

Introduction to Machine Learning with Applications in Information Security

Author: Mark Stamp

Publisher: CRC Press

ISBN: 1351818066

Category: Business & Economics

Page: 346

View: 1445

Introduction to Machine Learning with Applications in Information Security provides a class-tested introduction to a wide variety of machine learning algorithms, reinforced through realistic applications. The book is accessible and doesn’t prove theorems, or otherwise dwell on mathematical theory. The goal is to present topics at an intuitive level, with just enough detail to clarify the underlying concepts. The book covers core machine learning topics in-depth, including Hidden Markov Models, Principal Component Analysis, Support Vector Machines, and Clustering. It also includes coverage of Nearest Neighbors, Neural Networks, Boosting and AdaBoost, Random Forests, Linear Discriminant Analysis, Vector Quantization, Naive Bayes, Regression Analysis, Conditional Random Fields, and Data Analysis. Most of the examples in the book are drawn from the field of information security, with many of the machine learning applications specifically focused on malware. The applications presented are designed to demystify machine learning techniques by providing straightforward scenarios. Many of the exercises in this book require some programming, and basic computing concepts are assumed in a few of the application sections. However, anyone with a modest amount of programming experience should have no trouble with this aspect of the book. Instructor resources, including PowerPoint slides, lecture videos, and other relevant material are provided on an accompanying website: http://www.cs.sjsu.edu/~stamp/ML/. For the reader’s benefit, the figures in the book are also available in electronic form, and in color. About the Author Mark Stamp has been a Professor of Computer Science at San Jose State University since 2002. Prior to that, he worked at the National Security Agency (NSA) for seven years, and a Silicon Valley startup company for two years. He received his Ph.D. from Texas Tech University in 1992. His love affair with machine learning began in the early 1990s, when he was working at the NSA, and continues today at SJSU, where he has supervised vast numbers of master’s student projects, most of which involve a combination of information security and machine learning.
Computers

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger

Author: Al Sweigart

Publisher: dpunkt.verlag

ISBN: 3864919932

Category: Computers

Page: 576

View: 2627

Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!
Computers

Machine Learning

An Algorithmic Perspective, Second Edition

Author: Stephen Marsland

Publisher: CRC Press

ISBN: 1498759785

Category: Computers

Page: 457

View: 4327

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area. Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. New to the Second Edition Two new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of content Revision of the support vector machine material, including a simple implementation for experiments New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron Additional discussions of the Kalman and particle filters Improved code, including better use of naming conventions in Python Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.
BUSINESS & ECONOMICS

Aus der Welt

Grenzen der Entscheidung oder Eine Freundschaft, die unser Denken verändert hat

Author: Michael Lewis

Publisher: Campus Verlag

ISBN: 3593506866

Category: BUSINESS & ECONOMICS

Page: 359

View: 8202

Lewis verknüpft die Biografien der beiden Psychologen Daniel Kahneman und Amos Tversky mit ihren Forschungsarbeiten und zeigt, wie aus ihren Arbeiten eine neue Wissenschaftsdisziplin, die Verhaltensökonomik, entstehen konnte.
Business & Economics

Lean Startup

Schnell, risikolos und erfolgreich Unternehmen gründen

Author: Eric Ries

Publisher: Redline Wirtschaft

ISBN: 3864146712

Category: Business & Economics

Page: 200

View: 9381

Der Weg zum eigenen Unternehmen ist nie ohne Risiko. Und bis die Firma sich auf dem Markt etabliert hat, dauert es. Wer doch scheitert, verliert in der Regel viel Geld. Genau hier setzt das Konzept von Eric Ries an. Lean Startup heißt seine Methode. Sie ist schnell, ressourcenfreundlich und radikal erfolgsorientiert. Anhand von durchgespielten Szenarien kann man von vornherein die Erfolgsaussichten von Ideen, Produkten und Märkten bestimmen. Und auch während der Gründungphase wird der Stand der Dinge ständig überprüft. Machen, messen, lernen – so funktioniert der permanente Evaluationsprozess. Das spart enorm Zeit, Geld und Ressourcen und bietet die Möglichkeit, spontan den Kurs zu korrigieren. Das Lean-Startup-Tool hat sich schon zigtausenfach in der Praxis bewährt und setzt sich auch in Deutschland immer stärker durch.
Computers

Lifelong Machine Learning

Second Edition

Author: Zhiyuan Chen,Bing Liu

Publisher: Morgan & Claypool Publishers

ISBN: 168173303X

Category: Computers

Page: 207

View: 6942

Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.
Business & Economics

Die Berechnung der Zukunft

Warum die meisten Prognosen falsch sind und manche trotzdem zutreffen - Der New York Times Bestseller

Author: Nate Silver

Publisher: Heyne Verlag

ISBN: 3641112702

Category: Business & Economics

Page: 656

View: 3210

Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!
Computers

Machine Learning mit Python und Scikit-Learn und TensorFlow

Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning

Author: Sebastian Raschka,Vahid Mirjalili

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958457355

Category: Computers

Page: 584

View: 5887

Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, TensorFlow, Matplotlib, Pandas und Kera Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen Machine Learning und Predictive Analytics verändern die Arbeitsweise von Unternehmen grundlegend. Die Fähigkeit, in komplexen Daten Trends und Muster zu erkennen, ist heutzutage für den langfristigen geschäftlichen Erfolg ausschlaggebend und entwickelt sich zu einer der entscheidenden Wachstumsstrategien. Die zweite Auflage dieses Buchs berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dies betrifft insbesondere die neuesten Open-Source-Bibliotheken wie Scikit-learn, Keras und TensorFlow. Python zählt zu den führenden Programmiersprachen in den Bereichen Machine Learning, Data Science und Deep Learning und ist besonders gut dazu geeignet, grundlegende Erkenntnisse aus Ihren Daten zu gewinnen sowie ausgefeilte Algorithmen und statistische Modelle auszuarbeiten, die neue Einsichten liefern und wichtige Fragen beantworten. Die Autoren erläutern umfassend den Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür behandeln sie in diesem Buch ein breites Spektrum leistungsfähiger Python-Bibliotheken wie Scikit-learn, Keras und TensorFlow. Sie lernen detailliert, wie Sie Python für maschinelle Lernverfahren einsetzen und dabei eine Vielzahl von statistischen Modellen verwenden.
Technology & Engineering

Menschheit 2.0

Die Singularität naht

Author: Ray Kurzweil

Publisher: Lola Books

ISBN: 3944203135

Category: Technology & Engineering

Page: 672

View: 727

Das Jahr 2045 markiert einen historischen Meilenstein: Es ist das Jahr, in dem der Mensch seine biologischen Begrenzungen mithilfe der Technik überwinden wird. Diese als technologische Singularität bekannt gewordene Revolution wird die Menschheit für immer verändern. Googles Chefingenieur Ray Kurzweil, dessen wahnwitzigen Visionen in den vergangenen Jahrzehnten immer wieder genau ins Schwarze trafen, zeichnet in diesem Klassiker des Transhumanismus mit beispielloser Detailwut eine bunt schillernde Momentaufnahme der technischen Evolution und legt dar, weshalb diese so bald kein Ende finden, sondern im Gegenteil immer weiter an Dynamik gewinnen wird. Daraus ergibt sich eine ebenso faszinierende wie schockierende Vision für die Zukunft der Menschheit.
Computers

Data Mining

Practical Machine Learning Tools and Techniques

Author: Ian H. Witten,Eibe Frank,Mark A. Hall,Christopher J. Pal

Publisher: Morgan Kaufmann

ISBN: 0128043571

Category: Computers

Page: 654

View: 5120

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at http://www.cs.waikato.ac.nz/ml/weka/book.html It contains Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface Includes open-access online courses that introduce practical applications of the material in the book