Mathematics

Foundations of Algebraic Geometry

Author: AndrŽ Weil

Publisher: American Mathematical Soc.

ISBN: 0821810294

Category: Mathematics

Page: 363

View: 1225

This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
Geometry, Algebraic

Foundations of Algebraic Geometry

Author: André Weil

Publisher: American Mathematical Soc.

ISBN: 9780821874622

Category: Geometry, Algebraic

Page: 363

View: 4661

The manuscript of the first edition was completed in 1944. In this revision, the first six chapters of the first edition have been reproduced, and the following chapters rewritten completely. The book is not the last word on the topics it deals with, but the newly written chapters include material which was not to be found except in scattered form, in the literature of the last fifteen years. - Foreword.
Mathematics

Foundations of Algebraic Geometry

Author: AndrŽ Weil

Publisher: American Mathematical Soc.

ISBN: 0821810294

Category: Mathematics

Page: 363

View: 6786

This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
Mathematics

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 907

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Computers

Algebraic Geometry and Statistical Learning Theory

Author: Sumio Watanabe

Publisher: Cambridge University Press

ISBN: 0521864674

Category: Computers

Page: 286

View: 7029

Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
Mathematics

Foundations of Algebraic Topology

Author: Samuel Eilenberg,Norman Steenrod

Publisher: Princeton University Press

ISBN: 1400877490

Category: Mathematics

Page: 346

View: 3603

The need for an axiomatic treatment of homology and cohomology theory has long been felt by topologists. Professors Eilenberg and Steenrod present here for the first time an axiomatization of the complete transition from topology to algebra. Originally published in 1952. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Geometry, Algebraic

Introduction to Algebraic Geometry

Author: Steven Dale Cutkosky

Publisher: American Mathematical Soc.

ISBN: 1470435187

Category: Geometry, Algebraic

Page: 484

View: 6046

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Mathematics

Number Theory III

Diophantine Geometry

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN: 9783540612230

Category: Mathematics

Page: 296

View: 7973

In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see [La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideas for the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more.
Mathematics

Foundations of Hyperbolic Manifolds

Author: John Ratcliffe

Publisher: Springer Science & Business Media

ISBN: 1475740131

Category: Mathematics

Page: 750

View: 2278

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.
Mathematics

Foundations of Differentiable Manifolds and Lie Groups

Author: Frank W. Warner

Publisher: Springer Science & Business Media

ISBN: 1475717997

Category: Mathematics

Page: 276

View: 3090

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.
Mathematics

New Foundations in Mathematics

The Geometric Concept of Number

Author: Garret Sobczyk

Publisher: Springer Science & Business Media

ISBN: 0817683852

Category: Mathematics

Page: 370

View: 9689

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Computers

Geometric Algebra with Applications in Engineering

Author: Christian Perwass

Publisher: Springer Science & Business Media

ISBN: 3540890688

Category: Computers

Page: 386

View: 2399

The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.
Algebra

Algebra

Chapter 0

Author: Paolo Aluffi

Publisher: American Mathematical Soc.

ISBN: 0821847813

Category: Algebra

Page: 713

View: 1630

Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Mathematics

Алгебраическая геометрия для всех

Author: Miles Reid

Publisher: Cambridge University Press

ISBN: 9780521356626

Category: Mathematics

Page: 129

View: 1683

This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time.
Normal varieties (Algebraic geometry)

Normal Varieties

Author: Silvio Greco

Publisher: Academic Press

ISBN: N.A

Category: Normal varieties (Algebraic geometry)

Page: 72

View: 7243

Mathematics

Algebraic Geometry in Coding Theory and Cryptography

Author: Harald Niederreiter,Chaoping Xing

Publisher: Princeton University Press

ISBN: 9781400831302

Category: Mathematics

Page: 272

View: 4949

This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books
Mathematics

The Geometry of Schemes

Author: David Eisenbud,Joe Harris

Publisher: Springer Science & Business Media

ISBN: 0387226397

Category: Mathematics

Page: 300

View: 636

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Mathematics

Foundations of Grothendieck Duality for Diagrams of Schemes

Author: Joseph Lipman,Mitsuyasu Hashimoto

Publisher: Springer

ISBN: 3540854207

Category: Mathematics

Page: 478

View: 8602

Part One of this book covers the abstract foundations of Grothendieck duality theory for schemes in part with noetherian hypotheses and with some refinements for maps of finite tor-dimension. Part Two extends the theory to the context of diagrams of schemes.
Mathematics

Tensor Geometry

The Geometric Viewpoint and its Uses

Author: Christopher T. J. Dodson,Timothy Poston

Publisher: Springer Science & Business Media

ISBN: 3642105149

Category: Mathematics

Page: 434

View: 6246

This treatment of differential geometry and the mathematics required for general relativity makes the subject accessible, for the first time, to anyone familiar with elementary calculus in one variable and with some knowledge of vector algebra. The emphasis throughout is on the geometry of the mathematics, which is greatly enhanced by the many illustrations presenting figures of three and more dimensions as closely as the book form will allow.