Mathematics

Geometry and Billiards

Author: Serge Tabachnikov

Publisher: American Mathematical Soc.

ISBN: 0821839195

Category: Mathematics

Page: 176

View: 9503

This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisites include only the standard material usually covered in the first two years of college (the entire calculus sequence, linear algebra), readers should show some mathematical maturity and strongly rely on their mathematical common sense. As a reward, they will be taken to the forefront of current research.
Mathematics

Chaotic Billiards

Author: Nikolai Chernov,Roberto Markarian

Publisher: American Mathematical Soc.

ISBN: 0821840967

Category: Mathematics

Page: 316

View: 3923

This book covers one of the most exciting but most difficult topics in the modern theory of dynamical systems: chaotic billiards. In physics, billiard models describe various mechanical processes, molecular dynamics, and optical phenomena. The theory of chaotic billiards has made remarkable progress in the past thirty-five years, but it remains notoriously difficult for the beginner, with main results scattered in hardly accessible research articles. This is the first and so far only book that covers all the fundamental facts about chaotic billiards in a complete and systematic manner. The book contains all the necessary definitions, full proofs of all the main theorems, and many examples and illustrations that help the reader to understand the material. Hundreds of carefully designed exercises allow the reader not only to become familiar with chaotic billiards but to master the subject.The book addresses graduate students and young researchers in physics and mathematics. Prerequisites include standard graduate courses in measure theory, probability, Riemannian geometry, topology, and complex analysis. Some of this material is summarized in the appendices to the book.
Mathematics

The Joy of Factoring

Author: Samuel S. Wagstaff (Jr.)

Publisher: American Mathematical Soc.

ISBN: 1470410486

Category: Mathematics

Page: 293

View: 879

This book is about the theory and practice of integer factorisation presented in a historic perspective. It describes about twenty algorithms for factoring and a dozen other number theory algorithms that support the factoring algorithms. Most algorithms are described both in words and in pseudocode to satisfy both number theorists and computer scientists. Each of the ten chapters begins with a concise summary of its contents. The book starts with a general explanation of why factoring integers is important. The next two chapters present number theory results that are relevant to factoring. Further on there is a chapter discussing, in particular, mechanical and electronic devices for factoring, as well as factoring using quantum physics and DNA molecules. Another chapter applies factoring to breaking certain cryptographic algorithms. Yet another chapter is devoted to practical vs. theoretical aspects of factoring. The book contains more than 100 examples illustrating various algorithms and theorems. It also contains more than 100 interesting exercises to test the reader's understanding. Hints or answers are given for about a third of the exercises. The book concludes with a dozen suggestions of possible new methods for factoring integers. This book is written for readers who want to learn more about the best methods of factoring integers, many reasons for factoring, and some history of this fascinating subject. It can be read by anyone who has taken a first course in number theory.
Mathematics

Outer Billiards on Kites (AM-171)

Author: Richard Evan Schwartz

Publisher: Princeton University Press

ISBN: 9781400831975

Category: Mathematics

Page: 320

View: 772

Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950s, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system.
Mathematics

Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems

Author: Michal Fečkan,Michal Pospíšil

Publisher: Academic Press

ISBN: 0128043644

Category: Mathematics

Page: 260

View: 3249

Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems is devoted to the study of bifurcations of periodic solutions for general n-dimensional discontinuous systems. The authors study these systems under assumptions of transversal intersections with discontinuity-switching boundaries. Furthermore, bifurcations of periodic sliding solutions are studied from sliding periodic solutions of unperturbed discontinuous equations, and bifurcations of forced periodic solutions are also investigated for impact systems from single periodic solutions of unperturbed impact equations. In addition, the book presents studies for weakly coupled discontinuous systems, and also the local asymptotic properties of derived perturbed periodic solutions. The relationship between non-smooth systems and their continuous approximations is investigated as well. Examples of 2-, 3- and 4-dimensional discontinuous ordinary differential equations and impact systems are given to illustrate the theoretical results. The authors use so-called discontinuous Poincaré mapping which maps a point to its position after one period of the periodic solution. This approach is rather technical, but it does produce results for general dimensions of spatial variables and parameters as well as the asymptotical results such as stability, instability, and hyperbolicity. Extends Melnikov analysis of the classic Poincaré and Andronov staples, pointing to a general theory for freedom in dimensions of spatial variables and parameters as well as asymptotical results such as stability, instability, and hyperbolicity Presents a toolbox of critical theoretical techniques for many practical examples and models, including non-smooth dynamical systems Provides realistic models based on unsolved discontinuous problems from the literature and describes how Poincaré-Andronov-Melnikov analysis can be used to solve them Investigates the relationship between non-smooth systems and their continuous approximations
Convolutions (Mathematics)

Volterra Adventures

Author: Joel H. Shapiro

Publisher: American Mathematical Soc.

ISBN: 1470441160

Category: Convolutions (Mathematics)

Page: 219

View: 3907

This book introduces functional analysis to undergraduate mathematics students who possess a basic background in analysis and linear algebra. By studying how the Volterra operator acts on vector spaces of continuous functions, its readers will sharpen their skills, reinterpret what they already know, and learn fundamental Banach-space techniques—all in the pursuit of two celebrated results: the Titchmarsh Convolution Theorem and the Volterra Invariant Subspace Theorem. Exercises throughout the text enhance the material and facilitate interactive study.
Mathematics

The Octagonal PETs

Author: Richard Evan Schwartz

Publisher: American Mathematical Soc.

ISBN: 1470415224

Category: Mathematics

Page: 212

View: 7523

A polytope exchange transformation is a (discontinuous) map from a polytope to itself that is a translation wherever it is defined. The 1-dimensional examples, interval exchange transformations, have been studied fruitfully for many years and have deep connections to other areas of mathematics, such as Teichmüller theory. This book introduces a general method for constructing polytope exchange transformations in higher dimensions and then studies the simplest example of the construction in detail. The simplest case is a 1-parameter family of polygon exchange transformations that turns out to be closely related to outer billiards on semi-regular octagons. The 1-parameter family admits a complete renormalization scheme, and this structure allows for a fairly complete analysis both of the system and of outer billiards on semi-regular octagons. The material in this book was discovered through computer experimentation. On the other hand, the proofs are traditional, except for a few rigorous computer-assisted calculations.
Science

Frontiers in the Study of Chaotic Dynamical Systems with Open Problems

Author: Elhadj Zeraoulia,Julien C. Sprott

Publisher: World Scientific

ISBN: 9814340693

Category: Science

Page: 258

View: 4155

This collection of review articles is devoted to new developments in the study of chaotic dynamical systems with some open problems and challenges. The papers, written by many of the leading experts in the field, cover both the experimental and theoretical aspects of the subject. This edited volume presents a variety of fascinating topics of current interest and problems arising in the study of both discrete and continuous time chaotic dynamical systems. Exciting new techniques stemming from the area of nonlinear dynamical systems theory are currently being developed to meet these challenges. Presenting the state-of-the-art of the more advanced studies of chaotic dynamical systems, Frontiers in the Study of Chaotic Dynamical Systems with Open Problems is devoted to setting an agenda for future research in this exciting and challenging field.
Mathematics

Mathematical Omnibus

Thirty Lectures on Classic Mathematics

Author: D. B. Fuks,Serge Tabachnikov

Publisher: American Mathematical Soc.

ISBN: 0821843168

Category: Mathematics

Page: 463

View: 2376

The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.
Mathematics

Mostly Surfaces

Author: Richard Evan Schwartz

Publisher: American Mathematical Soc.

ISBN: 0821853686

Category: Mathematics

Page: 314

View: 679

This book presents a number of topics related to surfaces, such as Euclidean, spherical and hyperbolic geometry, the fundamental group, universal covering surfaces, Riemannian manifolds, the Gauss-Bonnet Theorem, and the Riemann mapping theorem. The main idea is to get to some interesting mathematics without too much formality. The book also includes some material only tangentially related to surfaces, such as the Cauchy Rigidity Theorem, the Dehn Dissection Theorem, and the Banach-Tarski Theorem.

The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigourous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis.

Mathematics

Basic Noncommutative Geometry

Author: Masoud Khalkhali

Publisher: European Mathematical Society

ISBN: 9783037190616

Category: Mathematics

Page: 223

View: 8254

"Basic Noncommutative Geometry provides an introduction to noncommutative geometry and some of its applications. The book can be used either as a textbook for a graduate course on the subject or for self-study. It will be useful for graduate students and researchers in mathematics and theoretical physics and all those who are interested in gaining an understanding of the subject. One feature of this book is the wealth of examples and exercises that help the reader to navigate through the subject. While background material is provided in the text and in several appendices, some familiarity with basic notions of functional analysis, algebraic topology, differential geometry and homological algebra at a first year graduate level is helpful. Developed by Alain Connes since the late 1970s, noncommutative geometry has found many applications to long-standing conjectures in topology and geometry and has recently made headways in theoretical physics and number theory. The book starts with a detailed description of some of the most pertinent algebra-geometry correspondences by casting geometric notions in algebraic terms, then proceeds in the second chapter to the idea of a noncommutative space and how it is constructed. The last two chapters deal with homological tools: cyclic cohomology and Connes-Chern characters in K-theory and K-homology, culminating in one commutative diagram expressing the equality of topological and analytic index in a noncommutative setting. Applications to integrality of noncommutative topological invariants are given as well."--Publisher's description.
Mathematics

Symmetry, Shape, and Surfaces

An Introduction to Mathematics Through Geometry

Author: L. Christine Kinsey,Teresa E. Moore

Publisher: Springer Science & Business Media

ISBN: 9781930190092

Category: Mathematics

Page: 494

View: 3982

This text is modern in its selection of topics and in the learning models used by the authors. Covers some exciting, but non-traditional topics from the subject area of geometry.
Mathematics

How Does One Cut a Triangle?

Author: Alexander Soifer

Publisher: Springer Science & Business Media

ISBN: 0387746528

Category: Mathematics

Page: 174

View: 1143

This second edition of Alexander Soifer’s How Does One Cut a Triangle? demonstrates how different areas of mathematics can be juxtaposed in the solution of a given problem. The author employs geometry, algebra, trigonometry, linear algebra, and rings to develop a miniature model of mathematical research.
Convex and discrete geometry -- Discrete geometry -- Quasicrystals, aperiodic tilings

Mathematics and Materials

Author: Mark J. Bowick,David Kinderlehrer,Govind Menon,Charles Radin

Publisher: American Mathematical Soc.

ISBN: 1470429195

Category: Convex and discrete geometry -- Discrete geometry -- Quasicrystals, aperiodic tilings

Page: 327

View: 3112

A co-publication of the AMS, IAS/Park City Mathematics Institute, and Society for Industrial and Applied Mathematics Articles in this volume are based on lectures presented at the Park City summer school on “Mathematics and Materials” in July 2014. The central theme is a description of material behavior that is rooted in statistical mechanics. While many presentations of mathematical problems in materials science begin with continuum mechanics, this volume takes an alternate approach. All the lectures present unique pedagogical introductions to the rich variety of material behavior that emerges from the interplay of geometry and statistical mechanics. The topics include the order-disorder transition in many geometric models of materials including nonlinear elasticity, sphere packings, granular materials, liquid crystals, and the emerging field of synthetic self-assembly. Several lectures touch on discrete geometry (especially packing) and statistical mechanics. The problems discussed in this book have an immediate mathematical appeal and are of increasing importance in applications, but are not as widely known as they should be to mathematicians interested in materials science. The volume will be of interest to graduate students and researchers in analysis and partial differential equations, continuum mechanics, condensed matter physics, discrete geometry, and mathematical physics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price. NOTE: This discount does not apply to volumes in this series co-published with the Society for Industrial and Applied Mathematics (SIAM).
Mathematics

The Best Writing on Mathematics 2015

Author: Mircea Pitici

Publisher: Princeton University Press

ISBN: 1400873371

Category: Mathematics

Page: 392

View: 4423

This annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2015 makes available to a wide audience many articles not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today’s hottest mathematical debates. Here David Hand explains why we should actually expect unlikely coincidences to happen; Arthur Benjamin and Ethan Brown unveil techniques for improvising custom-made magic number squares; Dana Mackenzie describes how mathematicians are making essential contributions to the development of synthetic biology; Steven Strogatz tells us why it’s worth writing about math for people who are alienated from it; Lisa Rougetet traces the earliest written descriptions of Nim, a popular game of mathematical strategy; Scott Aaronson looks at the unexpected implications of testing numbers for randomness; and much, much more. In addition to presenting the year’s most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.
Mathematics

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics

Author: David Carfi,Michel Laurent Lapidus,Erin P. J. Pearse,Machiel Van Frankenhuysen

Publisher: American Mathematical Soc.

ISBN: 0821891472

Category: Mathematics

Page: 399

View: 9775

This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.
Mathematics

Geometry Revealed

A Jacob's Ladder to Modern Higher Geometry

Author: Marcel Berger

Publisher: Springer Science & Business Media

ISBN: 9783540709978

Category: Mathematics

Page: 831

View: 1457

Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces, convex sets, etc., crucial ideas and above all abstract concepts needed for attaining the results are elucidated. These are conceptual notions, each built "above" the preceding and permitting an increase in abstraction, represented metaphorically by Jacob's ladder with its rungs: the 'ladder' in the Old Testament, that angels ascended and descended... In all this, the aim of the book is to demonstrate to readers the unceasingly renewed spirit of geometry and that even so-called "elementary" geometry is very much alive and at the very heart of the work of numerous contemporary mathematicians. It is also shown that there are innumerable paths yet to be explored and concepts to be created. The book is visually rich and inviting, so that readers may open it at random places and find much pleasure throughout according their own intuitions and inclinations. Marcel Berger is t he author of numerous successful books on geometry, this book once again is addressed to all students and teachers of mathematics with an affinity for geometry.
Mathematics

Moscow Mathematical Olympiads, 1993-1999

Author: Roman Mikhaĭlovich Fedorov,Silvio Levy

Publisher: American Mathematical Soc.

ISBN: 0821853635

Category: Mathematics

Page: 220

View: 3233

The Moscow Mathematical Olympiad has been challenging high school students with stimulating, original problems of different degrees of difficulty for over 75 years. The problems are nonstandard; solving them takes wit, thinking outside the box, and, sometimes, hours of contemplation. Some are within the reach of most mathematically competent high school students, while others are difficult even for a mathematics professor. Many mathematically inclined students have found that tackling these problems, or even just reading their solutions, is a great way to develop mathematical insight. In 2006 the Moscow Center for Continuous Mathematical Education began publishing a collection of problems from the Moscow Mathematical Olympiads, providing for each an answer (and sometimes a hint) as well as one or more detailed solutions. This volume represents the years 1993-1999. The problems and the accompanying material are well suited for math circles. They are also appropriate for problem-solving classes and practice for regional and national mathematics competitions. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).
Mathematics

Annals of Mathematics Studies

Author: Richard Evan Schwartz

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 6304

Mathematics

Matrices and Linear Algebra

Author: Hans Schneider,George Phillip Barker

Publisher: Courier Corporation

ISBN: 0486139301

Category: Mathematics

Page: 432

View: 6513

Basic textbook covers theory of matrices and its applications to systems of linear equations and related topics such as determinants, eigenvalues, and differential equations. Includes numerous exercises.