Mathematics

Introduction to Complex Analysis

Author: Hilary A. Priestley

Publisher: Oxford University Press

ISBN:

Category: Mathematics

Page: 328

View: 208

Complex analysis is a classic and central area of mathematics, which is studies and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much-awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter.
Mathematics

Introduction to Integration

Author: Hilary A. Priestley

Publisher: Oxford University Press

ISBN:

Category: Mathematics

Page: 306

View: 640

Introduction to integration provides a unified account of integration theory, giving a practical guide to the Lebesgue integral and its uses, with a wealth of illustrative examples and exercises. The book begins with a simplified Lebesgue-style integral (in lieu of the more traditional Riemann integral), intended for a first course in integration. This suffices for elementary applications, and serves as an introduction to the core of the book. The final chapters present selected applications, mostly drawn from Fourier analysis. The emphasis throughout is on integrable functions rather than on measure. The book is designed primarily as an undergraduate or introductory graduate textbook. It is similar in style and level to Priestley's Introduction to complex analysis, for which it provides a companion volume, and is aimed at both pure and applied mathematicians. Prerequisites are the rudiments of integral calculus and a first course in real analysis.
Functional analysis -- Topological linear spaces and related structures -- Graded Fraechet spaces and tame operators

Topics in Several Complex Variables

Author: Zair Ibragimov

Publisher: American Mathematical Soc.

ISBN:

Category: Functional analysis -- Topological linear spaces and related structures -- Graded Fraechet spaces and tame operators

Page: 156

View: 635

This volume contains the proceedings of the Special Session on Several Complex Variables, which was held during the first USA-Uzbekistan Conference on Analysis and Mathematical Physics from May 20–23, 2014, at California State University, Fullerton. This volume covers a wide variety of topics in pluripotential theory, symplectic geometry and almost complex structures, integral formulas, holomorphic extension, and complex dynamics. In particular, the reader will find articles on Lagrangian submanifolds and rational convexity, multidimensional residues, S-parabolic Stein manifolds, Segre varieties, and the theory of quasianalytic functions.
Mathematics

Diophantine Approximation on Linear Algebraic Groups

Author: Michel Waldschmidt

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 633

View: 452

The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.
Science

Feynman's Operational Calculus and Beyond

Author: Gerald W Johnson

Publisher: OUP Oxford

ISBN:

Category: Science

Page: 368

View: 192

This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted. This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.
Electronic journals

Nature

Author: Sir Norman Lockyer

Publisher:

ISBN:

Category: Electronic journals

Page:

View: 506

Mathematics

Functions of One Complex Variable I

Author: John B. Conway

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 317

View: 99

This book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - 8 arguments. The actual pre requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.
Mathematics

Complex Variables

Author: Steven G. Krantz

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 351

View: 856

Web Copy The idea of complex numbers dates back at least 300 years—to Gauss and Euler, among others. Today complex analysis is a central part of modern analytical thinking. It is used in engineering, physics, mathematics, astrophysics, and many other fields. It provides powerful tools for doing mathematical analysis, and often yields pleasing and unanticipated answers. This book makes the subject of complex analysis accessible to a broad audience. The complex numbers are a somewhat mysterious number system that seems to come out of the blue. It is important for students to see that this is really a very concrete set of objects that has very concrete and meaningful applications. Features: This new edition is a substantial rewrite, focusing on the accessibility, applied, and visual aspect of complex analysis This book has an exceptionally large number of examples and a large number of figures. The topic is presented as a natural outgrowth of the calculus. It is not a new language, or a new way of thinking. Incisive applications appear throughout the book. Partial differential equations are used as a unifying theme.
Mathematics

Harmonic and Complex Analysis and its Applications

Author: Alexander Vasil'ev

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 358

View: 291

This volume highlights the main results of the research performed within the network “Harmonic and Complex Analysis and its Applications” (HCAA), which was a five-year (2007–2012) European Science Foundation Programme intended to explore and to strengthen the bridge between two scientific communities: analysts with broad backgrounds in complex and harmonic analysis and mathematical physics, and specialists in physics and applied sciences. It coordinated actions for advancing harmonic and complex analysis and for expanding its application to challenging scientific problems. Particular topics considered by this Programme included conformal and quasiconformal mappings, potential theory, Banach spaces of analytic functions and their applications to the problems of fluid mechanics, conformal field theory, Hamiltonian and Lagrangian mechanics, and signal processing. This book is a collection of surveys written as a result of activities of the Programme and will be interesting and useful for professionals and novices in analysis and mathematical physics, as well as for graduate students. Browsing the volume, the reader will undoubtedly notice that, as the scope of the Programme is rather broad, there are many interrelations between the various contributions, which can be regarded as different facets of a common theme.