**Author**: Róbert Hermann

**Publisher:** Math-Sci Press

**ISBN:** 9780915692071

**Category:** Mathematics

**Page:** 282

**View:** 4884

Skip to content
# Free eBooks PDF

## Methods of Algebraic Geometry in Control Theory: Part I

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik
## Topics in the Geometric Theory of Linear Systems

## Methods of Algebraic Geometry in Control Theory: Part II

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." This describes this two volume work which has been specifically written to serve the needs of researchers and students of systems, control, and applied mathematics. Without sacrificing mathematical rigor, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than on abstraction. While familiarity with Part I is helpful, it is not essential, since a considerable amount of relevant material is included here. Part I, Scalar Linear Systems and Affine Algebraic Geometry, contains a clear presentation, with an applied flavor , of the core ideas in the algebra-geometric treatment of scalar linear system theory. Part II extends the theory to multivariable systems. After delineating limitations of the scalar theory through carefully chosen examples, the author introduces seven representations of a multivariable linear system and establishes the major results of the underlying theory. Of key importance is a clear, detailed analysis of the structure of the space of linear systems including the full set of equations defining the space. Key topics also covered are the Geometric Quotient Theorem and a highly geometric analysis of both state and output feedback. Prerequisites are the basics of linear algebra, some simple topological notions, the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises, which are an integral part of the exposition throughout, combined with an index and extensive bibliography of related literature make this a valuable classroom tool or good self-study resource. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "The exposition is extremely clear. In order to motivate the general theory, the author presents a number of examples of two or three input-, two-output systems in detail. I highly recommend this excellent book to all those interested in the interplay between control theory and algebraic geometry." —Publicationes Mathematicae, Debrecen "This book is the multivariable counterpart of Methods of Algebraic Geometry in Control Theory, Part I.... In the first volume the simpler single-input–single-output time-invariant linear systems were considered and the corresponding simpler affine algebraic geometry was used as the required prerequisite. Obviously, multivariable systems are more difficult and consequently the algebraic results are deeper and less transparent, but essential in the understanding of linear control theory.... Each chapter contains illustrative examples throughout and terminates with some exercises for further study." —Mathematical Reviews
## Introduction to Algebraic Geometry

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
## Notices of the American Mathematical Society

## Geometric structures in nonlinear physics

VOLUME 26 of INTERDISCIPLINARY MATHEMATICS, series expounding mathematical methodology in Physics & Engineering. TOPICS: Differential & Riemannian Geometry; Theories of Vorticity Dynamics, Einstein-Hilbert Gravitation, Colobeau-Rosinger Generalized Function Algebra, Deformations & Quantum Mechanics of Particles & Fields. Ultimate goal is to develop mathematical framework for reconciling Quantum Mechanics & concept of Point Particle. New ideas for researchers & students. Order: Math Sci Press, 53 Jordan Road, Brookline, MA 02146. (617) 738-0307.
## The American Mathematical Monthly

## Lie Groups

## Mathematical Reviews

## National Union Catalog

Includes entries for maps and atlases.
## Subject Guide to Books in Print

## The geometry of non-linear differential equations, Bäcklund transformations, and solitons

Just another PDF Download site

Mathematics

Technology & Engineering

Science

Geometry, Algebraic

Mathematics

Mathematics

Mathematicians

Lie groups

Mathematics

Union catalogs

American literature

Bäcklund transformations