Mathematics

Mathematical Analysis II

Author: Vladimir A. Zorich,R. Cooke

Publisher: Springer Science & Business Media

ISBN: 9783540406334

Category: Mathematics

Page: 688

View: 4173

This softcover edition of a very popular work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds, Fourier, Laplace, and Legendre transforms, elliptic functions and distributions.
Mathematics

Mathematical Analysis I

Author: Vladimir A. Zorich

Publisher: Springer Science & Business Media

ISBN: 9783540403869

Category: Mathematics

Page: 574

View: 2550

This softcover edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, elliptic functions and distributions. Especially notable in this course is the clearly expressed orientation toward the natural sciences and its informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems and fresh applications to areas seldom touched on in real analysis books. The first volume constitutes a complete course on one-variable calculus along with the multivariable differential calculus elucidated in an up-to-day, clear manner, with a pleasant geometric flavor.
Mathematics

Analysis 1

Author: V. A. Zorich

Publisher: Springer-Verlag

ISBN: 3540332782

Category: Mathematics

Page: 598

View: 2974

Ausführlicher Einblick in die Anfänge der Analysis: von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Ausgerichtet auf naturwissenschaftliche Fragestellungen und in detaillierter Herangehensweise an die Integral- und Differentialrechnung. Mit einer Fülle hilfreicher Beispiele, Aufgaben und Anwendungen. In Band 1: vollständige Übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variablen.
Mathematics

Mathematical Analysis II

Author: V. A. Zorich

Publisher: Springer

ISBN: 3662489937

Category: Mathematics

Page: 720

View: 7441

This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first English editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. This second volume presents classical analysis in its current form as part of a unified mathematics. It shows how analysis interacts with other modern fields of mathematics such as algebra, differential geometry, differential equations, complex analysis, and functional analysis. This book provides a firm foundation for advanced work in any of these directions.
Mathematics

Analysis 2

Differentialrechnung im Rn, Gewöhnliche Differentialgleichungen

Author: Otto Forster

Publisher: Springer-Verlag

ISBN: 366314173X

Category: Mathematics

Page: 165

View: 1597

Der vorliegende Band stellt den zweiten Teil eines Analysis-Kurses für Studenten der Mathematik und Physik dar. Das erste Kapitel befaßt sich mit der Differentialrechnung von Funktionen mehrerer reeller Veränderlichen. Nach einer Einführung in die topalogischen Grundbegriffe werden Kurven im IRn, partielle Ableitungen, totale Differenzierbarkeit, Taylorsche Formel, Maxima und Minima, implizite Funktionen und parameterabhängige Integrale behandelt. Das zweite Kapitel gibt eine kurze Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Nach dem Beweis des allgemeinen Existenz- und Eindeutigkeitssatzes und der Besprechung der Methode der Trennung der Variablen wird besonders auf die Theorie der linearen Differentialgleichungen eingegangen. Wie im ersten Band wurde versucht, allzu große Abstraktionen zu vermeiden und die allgemeine Theorie durch viele konkrete Beispiele zu erläutern, insbesondere solche, die für die Physik relevant sind. Bei der Bemessung des Stoffumfangs wurde berücksichtigt, daß die Analysis 2 meist in einem Sommersemester gelesen wird, in dem weniger Zeit zur Verfugung steht als in einem Wintersemester. Wegen der Kürze des Sommersemesters ist nach meiner Meinung eine befriedigende Behandlung der mehrdimensionalen Integration im 2. Semester nicht möglich, die besser dem 3. Semester vorbehalten bleibt. Dies Buch ist entstanden aus der Ausarbeitung einer Vorlesung, die ich im Sommer semester 1971 an der Universität Regensburg gehalten habe. Die damalige Vor lesungs-Ausarbeitung wurde von Herrn R. Schimpl angefertigt, dem ich hierfür meinen Dank sage.
Mathematics

Analysis II

Differential and Integral Calculus, Fourier Series, Holomorphic Functions

Author: Roger Godement

Publisher: Springer Science & Business Media

ISBN: 9783540209218

Category: Mathematics

Page: 443

View: 7849

Suitable for both teaching and self-study, this text emphasizes ideas over calculations and, avoiding the condensed style frequency found in textbooks, explains these ideas without parsimony of words.
Mathematics

Analysis 1

Author: Konrad Königsberger

Publisher: Springer-Verlag

ISBN: 3642973884

Category: Mathematics

Page: 360

View: 6317

In kurzer und prägnanter Form wird die Analysis der Grundvorlesung vorgestellt. Im Gegensatz zu den Analysisbänden von Blatter und Forster finden sich hier viele historische Anmerkungen. Außerdem wird viel Wert auf sachbezogene Motivation gelegt. Zusammen mit dem zum Wintersemester erscheinenden Band Analysis 2 eignet sich dieses Werk hervorragend zur Prüfungsvorbereitung nicht nur für Mathematikstudenten, sondern gerade auch für Informatik-, Physik- und Technikstudenten.
Mathematics

Vorlesungen über partielle Differentialgleichungen

Author: Vladimir I. Arnold

Publisher: Springer-Verlag

ISBN: 3540350314

Category: Mathematics

Page: 174

View: 6162

Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor.
Mathematics

Funktionentheorie

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer-Verlag

ISBN: 3662073501

Category: Mathematics

Page: 477

View: 8043

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebraische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± V-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + V-121 + ~2 - V-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z.B. J 1 + V-3 + J 1 - V-3 = v6. Im Jahre 1777 führte L. EULER die Bezeichnung i = yCI für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.
Mathematics

Endliche Gruppen

Eine Einführung in die Theorie der endlichen Gruppen

Author: H. Kurzweil

Publisher: Springer-Verlag

ISBN: 3642953131

Category: Mathematics

Page: 190

View: 377

Mathematics

Analysis II

Author: Christiane Tretter

Publisher: Springer-Verlag

ISBN: 3034804768

Category: Mathematics

Page: 149

View: 1706

Das Lehrbuch ist der zweite von zwei einführenden Bänden in die Analysis. Es zeichnet sich dadurch aus, dass alle Themen der Analysis 2 kompakt zusammengefasst sind und dennoch auf typische Schwierigkeiten eingegangen wird. Beginnend mit der Topologie metrischer Räume über die Differentialrechnung von Funktionen mehrerer reeller Variablen bis zu gewöhnlichen Differentialgleichungen und Fourierreihen, enthält das Buch alle prüfungsrelevanten Inhalte. Der Stoff kann anhand von Beispielen, Gegenbeispielen und Aufgaben nachvollzogen werden.
Mathematics

Analysis II

Author: Wolfgang Walter

Publisher: Springer-Verlag

ISBN: 3642967922

Category: Mathematics

Page: 398

View: 6793

Dem erfolgreichen Konzept von Analysis I folgend, wird auch im zweiten Teil dieses zweibändigen Analysis-Werkes viel Wert auf historische Zusammenhänge, Ausblicke und die Entwicklung der Analysis gelegt. Zu den Besonderheiten, die über den kanonischen Stoff des zweiten und dritten Semesters einer Analysisvorlesung hinausgehen, gehört das Lemma von Marston Morse. Die Grundtatsachen über die verschiedenen Integralbegriffe werden allesamt aus Sätzen über verallgemeinerte Limites (Moore-Smith-Konvergenz) abgeleitet. Die C?-Approximation von Funktionen (Friedrich Mollifiers) wird ebenso behandelt, wie die Theorie der absolut stetigen Funktionen. Bei den Fourierreihen wird die klassische Theorie in Weiterführung einer von Chernoff und Redheffer entwickelten Methode behandelt. Zahlreiche Beispiele, Übungsaufgaben und Anwendungen, z.B. aus der Physik und Astronomie runden dieses Lehrbuch ab.
Mathematics

Lineare Funktionalanalysis

Eine anwendungsorientierte Einführung

Author: Hans Wilhelm Alt

Publisher: Springer-Verlag

ISBN: 3642222617

Category: Mathematics

Page: 449

View: 8650

Die lineare Funktionalanalysis ist ein Teilgebiet der Mathematik, das Algebra mit Topologie und Analysis verbindet. Das Buch führt in das Fachgebiet ein, dabei bezieht es sich auf Anwendungen in Mathematik und Physik. Neben den vollständigen Beweisen aller mathematischen Sätze enthält der Band zahlreiche Aufgaben, meist mit Lösungen. Für die Neuauflage wurden die Inhalte komplett überarbeitet. Das Standardwerk auf dem Gebiet der Funktionalanalysis richtet sich insbesondere an Leser mit Interesse an Anwendungen auf Differentialgleichungen.

A Course on Rough Paths

With an Introduction to Regularity Structures

Author: Peter K. Friz,Martin Hairer

Publisher: N.A

ISBN: 9783319083339

Category:

Page: 268

View: 1120

Mathematics

Analysis I

Author: Herbert Amann,Joachim Escher

Publisher: Springer-Verlag

ISBN: 3034877943

Category: Mathematics

Page: 445

View: 1663

Dieses Lehrbuch ist der erste Band einer dreiteiligen Einführung in die Analysis. Es ist durch einen modernen und klaren Aufbau geprägt, der versucht den Blick auf das Wesentliche zu richten. Anders als in den üblichen Lehrbüchern wird keine künstliche Trennung zwischen der Theorie einer Variablen und derjenigen mehrerer Veränderlicher vorgenommen. Der Leser soll in dem Erkennen der wesentlichen Inhalte und Ideen der Analysis geschult werden und sich ein solides Fundament für das Studium tieferliegender Theorien erwerben. Das Werk richtet sich an Hörer und Dozenten der Anfängervorlesung der Analysis. Durch zahlreiche Beispiele, Übungsaufgaben und Ergänzungen zum üblichen Vorlesungsstoff ist der Text ausserdem zum Selbststudium, als Vorlage für vertiefende Seminare und als Grundlage für das gesamte Mathematik- bzw. Physikstudium geeignet.
Mathematics

Vorlesungen Über die Zahlentheorie der Quaternionen

Author: Adolf Hurwitz

Publisher: Springer-Verlag

ISBN: 3642475361

Category: Mathematics

Page: 76

View: 9382

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Mathematics

Geometric Aspects of Functional Analysis

Israel Seminar (GAFA) 2014–2016

Author: Bo'az Klartag,Emanuel Milman

Publisher: Springer

ISBN: 3319452827

Category: Mathematics

Page: 366

View: 762

As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. A classical theme in the Local Theory of Banach Spaces which is well represented in this volume is the identification of lower-dimensional structures in high-dimensional objects. More recent applications of high-dimensionality are manifested by contributions in Random Matrix Theory, Concentration of Measure and Empirical Processes. Naturally, the Gaussian measure plays a central role in many of these topics, and is also studied in this volume; in particular, the recent breakthrough proof of the Gaussian Correlation Conjecture is revisited. The interplay of the theory with Harmonic and Spectral Analysis is also well apparent in several contributions. The classical relation to both the primal and dual Brunn-Minkowski theories is also well represented, and related algebraic structures pertaining to valuations and valent functions are discussed. All contributions are original research papers and were subject to the usual refereeing standards.
Mathematics

Lehrbuch der Analysis

Author: Harro Heuser

Publisher: Springer-Verlag

ISBN: 3663013715

Category: Mathematics

Page: 643

View: 3869

Dieses Buch ist der erste Teil eines zweibändigen Werkes über Analysis. Es ist aus Vorlesungen, Übungen und Seminaren erwachsen, die ich mehrfach an den Universitäten Mainz und Karlsruhe gehalten habe, und so angelegt, daß es auch zum Selbststudium dienen kann. Ich widerstehe der Versuchung, dem Studenten, der jetzt dieses Vorwort liest, ausführlich die Themen zu beschreiben, die ihn erwarten; denn dazu müßte ich Worte gebrauchen, die er doch erst nach der Lektüre des Buches verstehen kann - nach der Lektüre aber sollte er selbst wissen, was gespielt worden ist. Den Kenner hingegen wird ein Blick auf das Inhaltsverzeichnis und ein rasches Durchblättern ausreichend orientieren. Dennoch halte ich es für möglich, anknüpfend an Schulkenntnisse und Alltagser fahrung auch dem Anfänger verständlich zu machen, was der rote Faden ist, der dieses Buch durchzieht und in welchem Geist es geschrieben wurde und gelesen werden möchte. Der rote Faden, das ständig aufklingende Leitmotiv und energisch vorwärts treibende Hauptproblem ist die Frage, wie man das Änderungsverhalten einer Funktion verstehen, beschreiben und beherrschen kann, schärfer: Welche Be griffe eignen sich am besten dazu, die Änderung einer Funktion "im Kleinen" (also bei geringen Änderungen ihrer unabhängigen Variablen) zu erfassen, was kann man über die Funktion "im Großen", über ihren Gesamtverlauf sagen, wenn man Kenntnisse über ihr Verhalten "im Kleinen" hat, geben uns diese Kenntnisse vielleicht sogar die Funktion gänzlich in die Hand odq besser: Wie tief müssen diese "lokalen Kenntnisse" gehen, um uns die Funktion "global"
Science

Distributionen Und Hilbertraumoperatoren

Mathematische Methoden Der Physik

Author: Philippe Blanchard,Erwin Brüning

Publisher: Springer

ISBN: 9783211825075

Category: Science

Page: 375

View: 5186

Das Buch bietet eine Einführung in die zum Studium der Theoretischen Physik notwendigen mathematischen Grundlagen. Der erste Teil des Buches beschäftigt sich mit der Theorie der Distributionen und vermittelt daneben einige Grundbegriffe der linearen Funktionalanalysis. Der zweite Teil baut darauf auf und gibt eine auf das Wesentliche beschränkte Einführung in die Theorie der linearen Operatoren in Hilbert-Räumen. Beide Teile werden von je einer Übersicht begleitet, die die zentralen Ideen und Begriffe knapp erläutert und den Inhalt kurz beschreibt. In den Anhängen werden einige grundlegende Konstruktionen und Konzepte der Funktionalanalysis dargestellt und wichtige Konsequenzen entwickelt.
Analysis - Lehrbuch

Reelle und Komplexe Analysis

Author: Walter Rudin

Publisher: Walter de Gruyter

ISBN: 9783486591866

Category: Analysis - Lehrbuch

Page: 499

View: 5186

Besonderen Wert legt Rudin darauf, dem Leser die Zusammenhänge unterschiedlicher Bereiche der Analysis zu vermitteln und so die Grundlage für ein umfassenderes Verständnis zu schaffen. Das Werk zeichnet sich durch seine wissenschaftliche Prägnanz und Genauigkeit aus und hat damit die Entwicklung der modernen Analysis in nachhaltiger Art und Weise beeinflusst. Der "Baby-Rudin" gehört weltweit zu den beliebtesten Lehrbüchern der Analysis und ist in 13 Sprachen übersetzt. 1993 wurde es mit dem renommierten Steele Prize for Mathematical Exposition der American Mathematical Society ausgezeichnet. Übersetzt von Uwe Krieg.