Mathematics

Mathematical Analysis II

Author: Vladimir A. Zorich,R. Cooke

Publisher: Springer Science & Business Media

ISBN: 9783540406334

Category: Mathematics

Page: 688

View: 2739

An entire generation of mathematicians has grown up during the time - tween the appearance of the ?rst edition of this textbook and the publication of the fourth edition, a translation of which is before you. The book is fam- iar to many people, who either attended the lectures on which it is based or studied out of it, and who now teach others in universities all over the world. I am glad that it has become accessible to English-speaking readers. This textbook consists of two parts. It is aimed primarily at university students and teachers specializing in mathematics and natural sciences, and at all those who wish to see both the rigorous mathematical theory and examplesofitse?ectiveuseinthesolutionofrealproblemsofnaturalscience. The textbook exposes classical analysis as it is today, as an integral part of Mathematics in its interrelations with other modern mathematical courses such as algebra, di?erential geometry, di?erential equations, complex and functional analysis.
Mathematics

Analysis II

Author: Vladimir A. Zorich

Publisher: Springer

ISBN: 9783540462316

Category: Mathematics

Page: 708

View: 8538

Ausführlich, klar, exakt, solide: die Anfänge der Analysis in 2 Bänden. Von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie u.a. Differenzialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Deutlich auf naturwissenschaftliche Fragen ausgerichtet, erläutert dieses Werk detailliert Begriffe, Inhalte und Sätze der Integral- und Differenzialrechnung. Die Fülle hilfreicher Beispiele, Aufgaben und Anwendungen ist selten in Analysisbüchern zu finden. Band 2 beschreibt den heutigen Stand der klassischen Analysis.
Mathematics

Mathematical Analysis I

Author: Vladimir A. Zorich

Publisher: Springer Science & Business Media

ISBN: 9783540403869

Category: Mathematics

Page: 574

View: 695

This softcover edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, elliptic functions and distributions. Especially notable in this course is the clearly expressed orientation toward the natural sciences and its informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems and fresh applications to areas seldom touched on in real analysis books. The first volume constitutes a complete course on one-variable calculus along with the multivariable differential calculus elucidated in an up-to-day, clear manner, with a pleasant geometric flavor.
Mathematics

Analysis 1

Author: V. A. Zorich

Publisher: Springer-Verlag

ISBN: 3540332782

Category: Mathematics

Page: 598

View: 6300

Ausführlicher Einblick in die Anfänge der Analysis: von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Ausgerichtet auf naturwissenschaftliche Fragestellungen und in detaillierter Herangehensweise an die Integral- und Differentialrechnung. Mit einer Fülle hilfreicher Beispiele, Aufgaben und Anwendungen. In Band 1: vollständige Übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variablen.
Mathematics

Angewandte Mathematik: Body and Soul

Band 2: Integrale und Geometrie in IRn

Author: Kenneth Eriksson,Donald Estep,Claes Johnson

Publisher: Springer-Verlag

ISBN: 3540269509

Category: Mathematics

Page: 362

View: 3199

"Angewandte Mathematik: Body & Soul" ist ein neuer Grundkurs in der Mathematikausbildung für Studienanfänger in den Naturwissenschaften, der Technik, und der Mathematik, der an der Chalmers Tekniska Högskola in Göteborg entwickelt wurde. Er besteht aus drei Bänden sowie Computer-Software. Das Projekt ist begründet in der Computerrevolution, die ihrerseits völlig neue Möglichkeiten des wissenschaftlichen Rechnens in der Mathematik, den Naturwissenschaften und im Ingenieurwesen eröffnet hat. Es besteht aus einer Synthese der mathematischen Analysis (Soul) mit der numerischen Berechnung (Body) sowie den Anwendungen. Die Bände I-III geben eine moderne Version der Analysis und der linearen Algebra wieder, einschließlich konstruktiver numerischer Techniken und Anwendungen, zugeschnitten auf Anfängerprogramme im Maschinenbau und den Naturwissenschaften. Weitere Bände behandeln Themen wie z.B. dynamische Systeme, Strömungsdynamik, Festkörpermechanik und Elektromagnetismus. Dieser Band entwickelt das Riemann-Integral, um eine Funktion zu einer gegebenen Ableitung zu bestimmen. Darauf aufbauend werden Differentialgleichungen und Anfangswertprobleme mit einer Vielzahl anschaulicher Anwendungen behandelt. Die lineare Algebra wird auf n-dimensionale Räume verallgemeinert, wobei wiederum dem praktischen Umgang und numerischen Lösungstechniken besonderer Platz eingeräumt wird. Die Autoren sind führende Experten im Gebiet des wissenschaftlichen Rechnens und haben schon mehrere erfolgreiche Bücher geschrieben. "[......] Oh, by the way, I suggest immediate purchase of all three volumes!" The Mathematical Association of America Online, 7.7.04
Mathematics

Mathematical Analysis II

Author: V. A. Zorich

Publisher: Springer

ISBN: 3662489937

Category: Mathematics

Page: 720

View: 1069

This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first English editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. This second volume presents classical analysis in its current form as part of a unified mathematics. It shows how analysis interacts with other modern fields of mathematics such as algebra, differential geometry, differential equations, complex analysis, and functional analysis. This book provides a firm foundation for advanced work in any of these directions.
Mathematics

Funktionentheorie

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer-Verlag

ISBN: 3662073501

Category: Mathematics

Page: 477

View: 9157

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebraische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± V-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + V-121 + ~2 - V-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z.B. J 1 + V-3 + J 1 - V-3 = v6. Im Jahre 1777 führte L. EULER die Bezeichnung i = yCI für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.
Mathematics

Endliche Gruppen

Eine Einführung in die Theorie der endlichen Gruppen

Author: H. Kurzweil

Publisher: Springer-Verlag

ISBN: 3642953131

Category: Mathematics

Page: 190

View: 9667

Mathematics

Analysis II

Differential and Integral Calculus, Fourier Series, Holomorphic Functions

Author: Roger Godement

Publisher: Springer Science & Business Media

ISBN: 9783540209218

Category: Mathematics

Page: 443

View: 2803

Suitable for both teaching and self-study, this text emphasizes ideas over calculations and, avoiding the condensed style frequency found in textbooks, explains these ideas without parsimony of words.
Mathematics

Analysis II

Author: Herbert Amann,Joachim Escher

Publisher: Springer Science & Business Media

ISBN: 3764371056

Category: Mathematics

Page: 415

View: 5035

Der zweite Band dieser Einführung in die Analysis behandelt die Integrationstheorie von Funktionen einer Variablen, die mehrdimensionale Differentialrechnung und die Theorie der Kurven und Kurvenintegrale. Der im ersten Band begonnene moderne und klare Aufbau wird konsequent fortgesetzt. Dadurch wird ein tragfähiges Fundament geschaffen, das es erlaubt, interessante Anwendungen zu behandeln, die zum Teil weit über den in der üblichen Lehrbuchliteratur behandelten Stoff hinausgehen. Zahlreiche Übungsaufgaben von unterschiedlichem Schwierigkeitsgrad und viele informative Abbildungen runden dieses Lehrbuch ab.

A Course on Rough Paths

With an Introduction to Regularity Structures

Author: Peter K. Friz,Martin Hairer

Publisher: N.A

ISBN: 9783319083339

Category:

Page: 268

View: 1596

Mathematics

Analysis I

Author: Martin Barner,Friedrich Flohr

Publisher: Walter de Gruyter

ISBN: 3110854775

Category: Mathematics

Page: 554

View: 8453

Analysis - Lehrbuch

Reelle und Komplexe Analysis

Author: Walter Rudin

Publisher: Walter de Gruyter

ISBN: 9783486591866

Category: Analysis - Lehrbuch

Page: 499

View: 3234

Besonderen Wert legt Rudin darauf, dem Leser die Zusammenhänge unterschiedlicher Bereiche der Analysis zu vermitteln und so die Grundlage für ein umfassenderes Verständnis zu schaffen. Das Werk zeichnet sich durch seine wissenschaftliche Prägnanz und Genauigkeit aus und hat damit die Entwicklung der modernen Analysis in nachhaltiger Art und Weise beeinflusst. Der "Baby-Rudin" gehört weltweit zu den beliebtesten Lehrbüchern der Analysis und ist in 13 Sprachen übersetzt. 1993 wurde es mit dem renommierten Steele Prize for Mathematical Exposition der American Mathematical Society ausgezeichnet. Übersetzt von Uwe Krieg.
Mathematics

Geometric Aspects of Functional Analysis

Israel Seminar (GAFA) 2014–2016

Author: Bo'az Klartag,Emanuel Milman

Publisher: Springer

ISBN: 3319452827

Category: Mathematics

Page: 366

View: 6240

As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. A classical theme in the Local Theory of Banach Spaces which is well represented in this volume is the identification of lower-dimensional structures in high-dimensional objects. More recent applications of high-dimensionality are manifested by contributions in Random Matrix Theory, Concentration of Measure and Empirical Processes. Naturally, the Gaussian measure plays a central role in many of these topics, and is also studied in this volume; in particular, the recent breakthrough proof of the Gaussian Correlation Conjecture is revisited. The interplay of the theory with Harmonic and Spectral Analysis is also well apparent in several contributions. The classical relation to both the primal and dual Brunn-Minkowski theories is also well represented, and related algebraic structures pertaining to valuations and valent functions are discussed. All contributions are original research papers and were subject to the usual refereeing standards.
Mathematics

Analysis III

Author: Herbert Amann,Joachim Escher

Publisher: Birkhäuser

ISBN: 9783764366148

Category: Mathematics

Page: 480

View: 3865

Der vorliegende dritte Band beschlieBt unsere EinfUhrung in die Analysis, mit der wir ein Fundament fUr den weiteren Aufbau des Mathematikstudiums gelegt haben. Wie schon in den ersten beiden Teilen haben wir auch hier wesentlich mehr Stoff behandelt, als dies in einem Kurs geschehen kann. Bei der Vorbereitung von Vorlesungen ist deshalb eine geeignete Stoffauswahl zu treffen, auch wenn die Lehrveranstaltungen durch Seminare erganzt und vertieft werden. Anhand der ausfiihrlichen Inhaltsangabe und der Einleitungen zu den einzelnen Kapiteln kann ein rascher Uberblick Uber den dargebotenen Stoff gewonnen werden. Das Buch ist insbesondere auch als BegleitlektUre zu Vorlesungen und fUr das Selbststudium geeignet. Die zahlreichen Ausblicke auf weiterfUhrende Theorien sollen Neugierde wecken und dazu animieren, im Verlaufe des weiteren Studiums tiefer einzudringen und mehr von der Schonheit und GroBe des mathematischen Gebaudes zu erfahren. Beim Verfassen dieses Bandes konnten wir wieder auf die unschatzbare Hil fe von Freunden, Kollegen, Mitarbeitern und Studenten ziihlen. Ganz besonders danken wir Georg Prokert, Pavol Quittner, Olivier Steiger und Christoph Wal ker, die den gesamten Text kritisch durchgearbeitet und uns so geholfen haben, Fehler zu eliminieren und substantielle Verbesserungen anzubringen. Unser Dank gilt auch Carlheinz Kneisel und Bea Wollenmann, die ebenfalls groBere Teile des Manuskripts gelesen und uns auf Ungereimtheiten hingewiesen haben.
Mathematics

Analysis

From Concepts to Applications

Author: Jean-Paul Penot

Publisher: Springer

ISBN: 331932411X

Category: Mathematics

Page: 669

View: 4403

This textbook covers the main results and methods of real analysis in a single volume. Taking a progressive approach to equations and transformations, this book starts with the very foundations of real analysis (set theory, order, convergence, and measure theory) before presenting powerful results that can be applied to concrete problems. In addition to classical results of functional analysis, differential calculus and integration, Analysis discusses topics such as convex analysis, dissipative operators and semigroups which are often absent from classical treatises. Acknowledging that analysis has significantly contributed to the understanding and development of the present world, the book further elaborates on techniques which pervade modern civilization, including wavelets in information theory, the Radon transform in medical imaging and partial differential equations in various mechanical and physical phenomena. Advanced undergraduate and graduate students, engineers as well as practitioners wishing to familiarise themselves with concepts and applications of analysis will find this book useful. With its content split into several topics of interest, the book’s style and layout make it suitable for use in several courses, while its self-contained character makes it appropriate for self-study.
Mathematics

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik

Author: Detlef Laugwitz

Publisher: Springer-Verlag

ISBN: 3034889836

Category: Mathematics

Page: 348

View: 4549

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."
Mathematics

Vorlesungen Über die Zahlentheorie der Quaternionen

Author: Adolf Hurwitz

Publisher: Springer-Verlag

ISBN: 3642475361

Category: Mathematics

Page: 76

View: 4187

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Mathematics

Analysis II

Author: Wolfgang Walter

Publisher: Springer-Verlag

ISBN: 3642967922

Category: Mathematics

Page: 398

View: 7228

Dem erfolgreichen Konzept von Analysis I folgend, wird auch im zweiten Teil dieses zweibändigen Analysis-Werkes viel Wert auf historische Zusammenhänge, Ausblicke und die Entwicklung der Analysis gelegt. Zu den Besonderheiten, die über den kanonischen Stoff des zweiten und dritten Semesters einer Analysisvorlesung hinausgehen, gehört das Lemma von Marston Morse. Die Grundtatsachen über die verschiedenen Integralbegriffe werden allesamt aus Sätzen über verallgemeinerte Limites (Moore-Smith-Konvergenz) abgeleitet. Die C?-Approximation von Funktionen (Friedrich Mollifiers) wird ebenso behandelt, wie die Theorie der absolut stetigen Funktionen. Bei den Fourierreihen wird die klassische Theorie in Weiterführung einer von Chernoff und Redheffer entwickelten Methode behandelt. Zahlreiche Beispiele, Übungsaufgaben und Anwendungen, z.B. aus der Physik und Astronomie runden dieses Lehrbuch ab.
Mathematics

Vektoranalysis

Differentialformen in Analysis, Geometrie und Physik

Author: Ilka Agricola,Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3834896721

Category: Mathematics

Page: 313

View: 694

Dieses Lehrbuch eignet sich als Fortsetzungskurs in Analysis nach den Grundvorlesungen im ersten Studienjahr. Die Vektoranalysis ist ein klassisches Teilgebiet der Mathematik mit vielfältigen Anwendungen, zum Beispiel in der Physik. Das Buch führt die Studierenden in die Welt der Differentialformen und Analysis auf Untermannigfaltigkeiten des Rn ein. Teile des Buches können auch sehr gut für Vorlesungen in Differentialgeometrie oder Mathematischer Physik verwendet werden. Der Text enthält viele ausführliche Beispiele mit vollständigem Lösungsweg, die zur Übung hilfreich sind. Zahlreiche Abbildungen veranschaulichen den Text. Am Ende jedes Kapitels befinden sich weitere Übungsaufgaben. In der ersten Auflage erschien das Buch unter dem Titel "Globale Analysis". Der Text wurde an vielen Stellen überarbeitet. Fast alle Bilder wurden neu erstellt. Inhaltliche Ergänzungen wurden u. a. in der Differentialgeometrie sowie der Elektrodynamik vorgenommen.