**Author**: Deirdre Haskell

**Publisher:** Cambridge University Press

**ISBN:**

**Category:** Mathematics

**Page:** 227

**View:** 737

Skip to content
# Free eBooks PDF

## Model Theory, Algebra, and Geometry

Leading experts survey the connections between model theory and semialgebraic, subanalytic, p-adic, rigid and diophantine geometry.
## Model Theory and Algebraic Geometry

This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
## Model Theory in Algebra, Analysis and Arithmetic

Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.
## Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry:

The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This first volume contains introductory texts on the model theory of valued fields, different approaches to non-Archimedean geometry, and motivic integration on algebraic varieties and non-Archimedean spaces.
## A Guide to Classical and Modern Model Theory

This volume is easily accessible to young people and mathematicians unfamiliar with logic. It gives a terse historical picture of Model Theory and introduces the latest developments in the area. It further provides 'hands-on' proofs of elimination of quantifiers, elimination of imaginaries and other relevant matters. The book is for trainees and professional model theorists, and mathematicians working in Algebra and Geometry.
## Algebra, Logic and Combinatorics

This book leads readers from a basic foundation to an advanced level understanding of algebra, logic and combinatorics. Perfect for graduate or PhD mathematical-science students looking for help in understanding the fundamentals of the topic, it also explores more specific areas such as invariant theory of finite groups, model theory, and enumerative combinatorics. Algebra, Logic and Combinatorics is the third volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas. Contents:Enumerative Combinatorics (Peter J Cameron)Introduction to the Finite Simple Groups (Robert A Wilson)Introduction to Representations of Algebras and Quivers (Anton Cox)The Invariant Theory of Finite Groups (Peter Fleischmann and James Shank)Model Theory (Ivan Tomašić) Readership: Researchers, graduate or PhD mathematical-science students who require a reference book that covers algebra, logic or combinatorics.
## Model Theory and the Philosophy of Mathematical Practice

Recounts the modern transformation of model theory and its effects on the philosophy of mathematics and mathematical practice.

Just another PDF Download site

Mathematics

Mathematics

Mathematics

Mathematics

Philosophy

Mathematics

Mathematics