Mathematics

Nonlinear Functional Analysis and its Applications

Author: E. Zeidler

Publisher: Springer

ISBN:

Category: Mathematics

Page: 993

View: 509

The fourth of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self-contained and accessible to the non-specialist, and topics covered include applications to mechanics, elasticity, plasticity, hydrodynamics, thermodynamics, statistical physics, and special and general relativity including cosmology. The book contains a detailed physical motivation of the relevant basic equations and a discussion of particular problems which have played a significant role in the development of physics and through which important mathematical and physical insight may be gained. It combines classical and modern ideas to build a bridge between the language and thoughts of physicists and mathematicians. Many exercises and a comprehensive bibliography complement the text.
Business & Economics

Oxford Users' Guide to Mathematics

Author: Eberhard Zeidler

Publisher: Oxford University Press

ISBN:

Category: Business & Economics

Page: 1284

View: 895

The Oxford Users' Guide to Mathematics is one of the leading handbooks on mathematics available. It presents a comprehensive modern picture of mathematics and emphasises the relations between the different branches of mathematics, and the applications of mathematics in engineering and the natural sciences. The Oxford User's Guide covers a broad spectrum of mathematics starting with the basic material and progressing on to more advanced topics that have come to the fore in the last few decades. The book is organised into mathematical sub-disciplines including analysis, algebra, geometry, foundations of mathematics, calculus of variations and optimisation, theory of probability and mathematical statistics, numerical mathematics and scientific computing, and history of mathematics. The book is supplemented by numerous tables on infinite series, special functions, integrals, integral transformations, mathematical statistics, and fundamental constants in physics. It also includes a comprehensive bibliography of key contemporary literature as well as an extensive glossary and index. The wealth of material, reaching across all levels and numerous sub-disciplines, makes The Oxford User's Guide to Mathematics an invaluable reference source for students of engineering, mathematics, computer science, and the natural sciences, as well as teachers, practitioners, and researchers in industry and academia.
Mathematics

Global Bifurcation in Variational Inequalities

Author: Vy Khoi Le

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 252

View: 592

An up-to-date and unified treatment of bifurcation theory for variational inequalities in reflexive spaces and the use of the theory in a variety of applications, such as: obstacle problems from elasticity theory, unilateral problems; torsion problems; equations from fluid mechanics and quasilinear elliptic partial differential equations. The tools employed are those of modern nonlinear analysis. Accessible to graduate students and researchers who work in nonlinear analysis, nonlinear partial differential equations, and additional research disciplines that use nonlinear mathematics.
Mathematics

Nonlinear Functional Analysis and its Applications

Author: E. Zeidler

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 993

View: 596

The fourth of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self-contained and accessible to the non-specialist, and topics covered include applications to mechanics, elasticity, plasticity, hydrodynamics, thermodynamics, statistical physics, and special and general relativity including cosmology. The book contains a detailed physical motivation of the relevant basic equations and a discussion of particular problems which have played a significant role in the development of physics and through which important mathematical and physical insight may be gained. It combines classical and modern ideas to build a bridge between the language and thoughts of physicists and mathematicians. Many exercises and a comprehensive bibliography complement the text.
Mathematics

Applied Functional Analysis

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 481

View: 140

The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.
Mathematics

Nonlinear Functional Analysis and Its Applications: Fixed point theorems

Author: Eberhard Zeidler

Publisher: Springer

ISBN:

Category: Mathematics

Page: 909

View: 728

From the reviews:"...has a flowing, coherent form and contains nice comments, overviews, and perspectives on the strategy and implementations of the considered procedures, and is concluded with complementary problems. Moreover, at the end of each volume there is a comprehensive and up-to-date bibliography. The work is clearly written and organized so that each chapter can be independently approached." (Zentralblatt für Mathematik und ihre Grenzgebiete)"The book is in fact dedicated to a large area of applications. Mathematicians, engineers, and natural scientists will find many interesting results." (Acta Applicandae Mathematicae)
Mathematics

Applied Nonlinear Functional Analysis

Author: Nikolaos S. Papageorgiou

Publisher: Walter de Gruyter GmbH & Co KG

ISBN:

Category: Mathematics

Page: 622

View: 895

The aim of this book is to provide a concise but complete introduction to the main mathematical tools of nonlinear functional analysis, which are also used in the study of concrete problems in economics, engineering, and physics. This volume gathers the mathematical background needed in order to conduct research or to deal with theoretical problems and applications using the tools of nonlinear functional analysis.
Mathematics

Functional Analysis and Applications

Author: Abul Hasan Siddiqi

Publisher: Springer

ISBN:

Category: Mathematics

Page: 562

View: 261

This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.
Science

Methods of Modern Mathematical Physics: Functional analysis

Author: Michael Reed

Publisher: Gulf Professional Publishing

ISBN:

Category: Science

Page: 400

View: 450

This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.