Mathematics

P-adic Analysis Compared with Real

Author: Svetlana Katok

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 152

View: 979

The book gives an introduction to $p$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. In addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and $p$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of $p$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.
Functional analysis

Advances in Ultrametric Analysis

Author: Alain Escassut

Publisher: American Mathematical Soc.

ISBN:

Category: Functional analysis

Page: 290

View: 815

Articles included in this book feature recent developments in various areas of non-Archimedean analysis: summation of -adic series, rational maps on the projective line over , non-Archimedean Hahn-Banach theorems, ultrametric Calkin algebras, -modules with a convex base, non-compact Trace class operators and Schatten-class operators in -adic Hilbert spaces, algebras of strictly differentiable functions, inverse function theorem and mean value theorem in Levi-Civita fields, ultrametric spectra of commutative non-unital Banach rings, classes of non-Archimedean Köthe spaces, -adic Nevanlinna theory and applications, and sub-coordinate representation of -adic functions. Moreover, a paper on the history of -adic analysis with a comparative summary of non-Archimedean fields is presented. Through a combination of new research articles and a survey paper, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
Geometry

From Groups to Geometry and Back

Author: Vaughn Climenhaga

Publisher: American Mathematical Soc.

ISBN:

Category: Geometry

Page: 420

View: 650

Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering spaces and deck transformations. In the other direction, Cayley graphs, planar models, and fundamental domains appear as geometric objects associated to groups. The final chapter discusses groups themselves as geometric objects, including a gentle introduction to Gromov's theorem on polynomial growth and Grigorchuk's example of intermediate growth. The book is accessible to undergraduate students (and anyone else) with a background in calculus, linear algebra, and basic real analysis, including topological notions of convergence and connectedness. This book is a result of the MASS course in algebra at Penn State University in the fall semester of 2009.
Mathematics

An Introduction to Ultrametric Summability Theory

Author: P.N. Natarajan

Publisher: Springer

ISBN:

Category: Mathematics

Page: 159

View: 446

This is the second, completely revised and expanded edition of the author’s first book, covering numerous new topics and recent developments in ultrametric summability theory. Ultrametric analysis has emerged as an important branch of mathematics in recent years. This book presents a brief survey of the research to date in ultrametric summability theory, which is a fusion of a classical branch of mathematics (summability theory) with a modern branch of analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis. The book is also useful as a text for those who wish to specialize in ultrametric summability theory.
Mathematics

Advances in Ultrametric Analysis

Author: Khodr Shamseddine

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 291

View: 386

This volume contains papers based on lectures given at the 12th International Conference on p-adic Functional Analysis, which was held at the University of Manitoba on July 2-6, 2012. The articles included in this book feature recent developments in various areas of non-archimedean analysis: branched values and zeros of the derivative of a $p$-adic meromorphic function, p-adic meromorphic functions $f^{\prime}P^{\prime}(f), g^{\prime}P^{\prime}(g)$ sharing a small function, properties of composition of analytic functions, partial fractional differentiability, morphisms between ultrametric Banach algebras of continuous functions and maximal ideals of finite dimension, the $p$-adic $q$-distributions, Banach spaces over fields with an infinite rank valuation, Grobman-Hartman theorems for diffeomorphisms of Banach spaces over valued fields, integral representations of continuous linear maps on $p$-adic spaces of continuous functions, non-Archimedean operator algebras, generalized Keller spaces over valued fields, proper multiplications on the completion of a totally ordered abelian group, the Grothendieck approximation theory in non-Archimedean functional analysis, generalized power series spaces, measure theory and the study of power series and analytic functions on the Levi-Civita fileds. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
Mathematics

Ultrametric Calculus

Author: W. H. Schikhof

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 320

View: 185

This is an introduction to p-adic analysis which is elementary yet complete and which displays the variety of applications of the subject. Dr Schikhof is able to point out and explain how p-adic and 'real' analysis differ. This approach guarantees the reader quickly becomes acquainted with this equally 'real' analysis and appreciates its relevance. The reader's understanding is enhanced and deepened by the large number of exercises included throughout; these both test the reader's grasp and extend the text in interesting directions. As a consequence, this book will become a standard reference for professionals (especially in p-adic analysis, number theory and algebraic geometry) and will be welcomed as a textbook for advanced students of mathematics familiar with algebra and analysis.
Foreign Language Study

التحليل الدالي: دراسة نظرية وتطبيقات

Author: Haim Brezis

Publisher: العبيكان للنشر

ISBN:

Category: Foreign Language Study

Page: 378

View: 670

يتناول هذا المؤلف من جديد ـ بشكل أكثر دقة وتصميماً ـ مادة مُدرَّسة بجامعة بيار وماري كوري على مستوى البكالريوس، وهو يفترض معرفة العناصر الأساسية من الطوبولوجيا العامة والتكامل الحسابي والتفاضلي. يتعرض الجزء الأول من الكتاب (الفصول 1-7) إلى جوانب (مجردة) من التحليل الدالي، أما الجزء الثاني من المادة (الفصول 8-10) فيتعلق بدراسة فضاءات دالية (ملموسة) مستعملة في نظرية المعادلات التفاضلية الجزئية، تبين كيف يمكن لمبرهنات وجود(مجردة) أن تسهم في حل معادلات تفاضلية جزئية. هناك ارتباط وثيق بين هذين الفرعين من التحليل: تاريخياً، تطور التحليل الدالي(المجرد) ليجيب عن أسئلة أثيرت عند حل المعادلات التفاضلية الجزئية، وفي المقابل أدى تطور التحليل الدالي (المجرد) إلى تحفيز كبير لنظرية المعادلات التفاضلية الجزئية. سيكون هذا الكتاب مفيداً لكل من الطلبة المهتمين بالرياضيات البحثية، وكذا أولئك المهتمين بالتوجه نحو الرياضيات التطبيقية. العبيكان للنشر
Mathematics

Real Mathematical Analysis

Author: Charles C. Pugh

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 440

View: 894

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.