Mathematics

p-adic Numbers, p-adic Analysis, and Zeta-Functions

Author: Neal Koblitz

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 153

View: 376

The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.
Science

P-adic Analysis and Mathematical Physics

Author: Vasili? Sergeevich Vladimirov

Publisher: World Scientific

ISBN:

Category: Science

Page: 319

View: 595

p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.
Mathematics

p-adic Numbers

Author: Fernando Quadros Gouvea

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 306

View: 123

There are numbers of all kinds: rational, real, complex, p-adic. The p-adic numbers are less well known than the others, but they play a fundamental role in number theory and in other parts of mathematics. This elementary introduction offers a broad understanding of p-adic numbers. From the reviews: "It is perhaps the most suitable text for beginners, and I shall definitely recommend it to anyone who asks me what a p-adic number is." --THE MATHEMATICAL GAZETTE
Mathematics

P-adic Analysis

Author: Neal Koblitz

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 163

View: 357

An introduction to recent work in the theory of numbers and its interrelation with algebraic geometry and analysis.
Mathematics

Additive Number Theory: Inverse Problems and the Geometry of Sumsets

Author: Melvyn B. Nathanson

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 296

View: 422

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.
Mathematics

Calabi-Yau Varieties and Mirror Symmetry

Author: Noriko Yui

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 367

View: 399

The idea of mirror symmetry originated in physics, but in recent years, the field of mirror symmetry has exploded onto the mathematical scene. It has inspired many new developments in algebraic and arithmetic geometry, toric geometry, the theory of Riemann surfaces, and infinite-dimensional Lie algebras among others. The developments in physics stimulated the interest of mathematicians in Calabi-Yau varieties. This led to the realization that the time is ripe for mathematicians, armed with many concrete examples and alerted by the mirror symmetry phenomenon, to focus on Calabi-Yau varieties and to test for these special varieties some of the great outstanding conjectures, e.g., the modularity conjecture for Calabi-Yau threefolds defined over the rationals, the Bloch-Beilinson conjectures, regulator maps of higher algebraic cycles, Picard-Fuchs differential equations, GKZ hypergeometric systems, and others. The articles in this volume report on current developments. The papers are divided roughly into two categories: geometric methods and arithmetic methods. One of the significant outcomes of the workshop is that we are finally beginning to understand the mirror symmetry phenomenon from the arithmetic point of view, namely, in terms of zeta-functions and L-series of mirror pairs of Calabi-Yau threefolds. The book is suitable for researchers interested in mirror symmetry and string theory.
Mathematics

Diophantine Analysis

Author: J. H. Loxton

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 170

View: 610

These papers were presented at the 1985 Australian Mathematical Society convention. They survey recent work in Diophantine analysis.
Mathematics

Integration and Probability

Author: Paul Malliavin

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 326

View: 957

An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.