Technology & Engineering

Principles of Robot Motion

Theory, Algorithms, and Implementation

Author: Howie M. Choset

Publisher: MIT Press

ISBN: 9780262033275

Category: Technology & Engineering

Page: 603

View: 9701

A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts.
Technology & Engineering

Probabilistic Robotics

Author: Sebastian Thrun,Wolfram Burgard,Dieter Fox

Publisher: MIT Press

ISBN: 0262201623

Category: Technology & Engineering

Page: 647

View: 6965

Probablistic robotics is a growing area in the subject, concerned with perception and control in the face of uncertainty and giving robots a level of robustness in real-world situations. This book introduces techniques and algorithms in the field.
Computers

Introduction to Autonomous Mobile Robots

Author: Roland Siegwart,Illah Reza Nourbakhsh,Davide Scaramuzza

Publisher: MIT Press

ISBN: 0262015358

Category: Computers

Page: 453

View: 1388

Machine generated contents note: |g 1. |t Introduction -- |g 1.1. |t Introduction -- |g 1.2. |t An Overview of the Book -- |g 2. |t Locomotion -- |g 2.1. |t Introduction -- |g 2.1.1. |t Key issues for locomotion -- |g 2.2. |t Legged Mobile Robots -- |g 2.2.1. |t Leg configurations and stability -- |g 2.2.2. |t Consideration of dynamics -- |g 2.2.3. |t Examples of legged robot locomotion -- |g 2.3. |t Wheeled Mobile Robots -- |g 2.3.1. |t Wheeled locomotion: The design space -- |g 2.3.2. |t Wheeled locomotion: Case studies -- |g 2.4. |t Aerial Mobile Robots -- |g 2.4.1. |t Introduction -- |g 2.4.2. |t Aircraft configurations -- |g 2.4.3. |t State of the art in autonomous VTOL -- |g 2.5. |t Problems -- |g 3. |t Mobile Robot Kinematics -- |g 3.1. |t Introduction -- |g 3.2. |t Kinematic Models and Constraints -- |g 3.2.1. |t Representing robot position -- |g 3.2.2. |t Forward kinematic models -- |g 3.2.3. |t Wheel kinematic constraints -- |g 3.2.4. |t Robot kinematic constraints -- |g 3.g 3.3. |t Mobile Robot Maneuverability -- |g 3.3.1. |t Degree of mobility -- |g 3.3.2. |t Degree of steerability -- |g 3.3.3. |t Robot maneuverability -- |g 3.4. |t Mobile Robot Workspace -- |g 3.4.1. |t Degrees of freedom -- |g 3.4.2. |t Holonomic robots -- |g 3.4.3. |t Path and trajectory considerations -- |g 3.5. |t Beyond Basic Kinematics -- |g 3.6. |t Motion Control (Kinematic Control) -- |g 3.6.1. |t Open loop control (trajectory-following) -- |g 3.6.2. |t Feedback control -- |g 3.7. |t Problems -- |g 4. |t Perception -- |g 4.1. |t Sensors for Mobile Robots -- |g 4.1.1. |t Sensor classification -- |g 4.1.2. |t Characterizing sensor performance -- |g 4.1.3. |t Representing uncertainty -- |g 4.1.4. |t Wheel/motor sensors -- |g 4.1.5. |t Heading sensors -- |g 4.1.6. |t Accelerometers -- |g 4.1.7. |t Inertial measurement unit (IMU) -- |g 4.1.8. |t Ground beacons -- |g 4.1.9. |t Active ranging -- |g 4.1.10. |t Motion/speed sensors -- |g 4.1.11. |t Vision sensors -- |g 4.2. |t Fundameng 4.2.5. |t Structure from stereo -- |g 4.2.6. |t Structure from motion -- |g 4.2.7. |t Motion and optical flow -- |g 4.2.8. |t Color tracking -- |g 4.3. |t Fundamentals of Image Processing -- |g 4.3.1. |t Image filtering -- |g 4.3.2. |t Edge detection -- |g 4.3.3. |t Computing image similarity -- |g 4.4. |t Feature Extraction -- |g 4.5. |t Image Feature Extraction: Interest Point Detectors -- |g 4.5.1. |t Introduction -- |g 4.5.2. |t Properties of the ideal feature detector -- |g 4.5.3. |t Corner detectors -- |g 4.5.4. |t Invariance to photometric and geometric changes -- |g 4.5.5. |t Blob detectors -- |g 4.6. |t Place Recognition -- |g 4.6.1. |t Introduction -- |g 4.6.2. |t From bag of features to visual words -- |g 4.6.3. |t Efficient location recognition by using an inverted file -- |g 4.6.4. |t Geometric verification for robust place recognition -- |g 4.6.5. |t Applications -- |g 4.6.6. |t Other image representations for place recognition -- |g 4.7. |t Feature Extraction Based ong 4.7.3. |t Range histogram features -- |g 4.7.4. |t Extracting other geometric features -- |g 4.8. |t Problems -- |g 5. |t Mobile Robot Localization -- |g 5.1. |t Introduction -- |g 5.2. |t The Challenge of Localization: Noise and Aliasing -- |g 5.2.1. |t Sensor noise -- |g 5.2.2. |t Sensor aliasing -- |g 5.2.3. |t Effector noise -- |g 5.2.4. |t An error model for odometric position estimation -- |g 5.3. |t To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions -- |g 5.4. |t Belief Representation -- |g 5.4.1. |t Single-hypothesis belief -- |g 5.4.2. |t Multiple-hypothesis belief -- |g 5.5. |t Map Representation -- |g 5.5.1. |t Continuous representations -- |g 5.5.2. |t Decomposition strategies -- |g 5.5.3. |t State of the art: Current challenges in map representation -- |g 5.6. |t Probabilistic Map-Based Localization -- |g 5.6.1. |t Introduction -- |g 5.6.2. |t The robot localization problem -- |g 5.6.3. |t Basic concepts of probability theory -- |gg 5.6.6. |t Classification of localization problems -- |g 5.6.7. |t Markov localization -- |g 5.6.8. |t Kalman filter localization -- |g 5.7. |t Other Examples of Localization Systems -- |g 5.7.1. |t Landmark-based navigation -- |g 5.7.2. |t Globally unique localization -- |g 5.7.3. |t Positioning beacon systems -- |g 5.7.4. |t Route-based localization -- |g 5.8. |t Autonomous Map Building -- |g 5.8.1. |t Introduction -- |g 5.8.2. |t SLAM: The simultaneous localization and mapping problem -- |g 5.8.3. |t Mathematical definition of SLAM -- |g 5.8.4. |t Extended Kalman Filter (EKF) SLAM -- |g 5.8.5. |t Visual SLAM with a single camera -- |g 5.8.6. |t Discussion on EKF SLAM -- |g 5.8.7. |t Graph-based SLAM -- |g 5.8.8. |t Particle filter SLAM -- |g 5.8.9. |t Open challenges in SLAM -- |g 5.8.10. |t Open source SLAM software and other resources -- |g 5.9. |t Problems -- |g 6. |t Planning and Navigation -- |g 6.1. |t Introduction -- |g 6.2. |t Competences for Navigation: Planning and Reactig 6.4. |t Obstacle avoidance -- |g 6.4.1. |t Bug algorithm -- |g 6.4.2. |t Vector field histogram -- |g 6.4.3. |t The bubble band technique -- |g 6.4.4. |t Curvature velocity techniques -- |g 6.4.5. |t Dynamic window approaches -- |g 6.4.6. |t The Schlegel approach to obstacle avoidance -- |g 6.4.7. |t Nearness diagram -- |g 6.4.8. |t Gradient method -- |g 6.4.9. |t Adding dynamic constraints -- |g 6.4.10. |t Other approaches -- |g 6.4.11. |t Overview -- |g 6.5. |t Navigation Architectures -- |g 6.5.1. |t Modularity for code reuse and sharing -- |g 6.5.2. |t Control localization -- |g 6.5.3. |t Techniques for decomposition -- |g 6.5.4. |t Case studies: tiered robot architectures -- |g 6.6. |t Problems -- |t Bibliography -- |t Books -- |t Papers -- |t Referenced Webpages.
Computers

Planning Algorithms

Author: Steven M. LaValle

Publisher: Cambridge University Press

ISBN: 1139455176

Category: Computers

Page: N.A

View: 4113

Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning, but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the 'configuration spaces' of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. This text and reference is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.
Computers

Mobile Robotics

Mathematics, Models, and Methods

Author: Alonzo Kelly

Publisher: Cambridge University Press

ISBN: 110703115X

Category: Computers

Page: 716

View: 7700

Mobile Robotics offers comprehensive coverage of the essentials of the field suitable for both students and practitioners. Adapted from Alonzo Kelly's graduate and undergraduate courses, the content of the book reflects current approaches to developing effective mobile robots. Professor Kelly adapts principles and techniques from the fields of mathematics, physics, and numerical methods to present a consistent framework in a notation that facilitates learning and highlights relationships between topics. This text was developed specifically to be accessible to senior level undergraduates in engineering and computer science, and includes supporting exercises to reinforce the lessons of each section. Practitioners will value Kelly's perspectives on practical applications of these principles. Complex subjects are reduced to implementable algorithms extracted from real systems wherever possible, to enhance the real-world relevance of the text.
Computers

Mechanics of Robotic Manipulation

Author: N.A

Publisher: MIT Press

ISBN: 9780262263740

Category: Computers

Page: 272

View: 7358

"Manipulation" refers to a variety of physical changes made to the world around us. Mechanics of Robotic Manipulation addresses one form of robotic manipulation, moving objects, and the various processes involved -- grasping, carrying, pushing, dropping, throwing, and so on. Unlike most books on the subject, it focuses on manipulation rather than manipulators. This attention to processes rather than devices allows a more fundamental approach, leading to results that apply to a broad range of devices, not just robotic arms.The book draws both on classical mechanics and on classical planning, which introduces the element of imperfect information. The book does not propose a specific solution to the problem of manipulation, but rather outlines a path of inquiry.
Computers

Behavior-based Robotics

Author: Ronald C. Arkin

Publisher: MIT Press

ISBN: 9780262011655

Category: Computers

Page: 491

View: 418

foreword by Michael Arbib "Hard to put down and necessary to know -- Arkin's book provides a comprehensive intellectual history of robots and a thorough compilation of robotic organizational paradigms from reflexes through social interaction." -- Chris Brown, Professor of Computer Science, University of Rochester This introduction to the principles, design, and practice of intelligent behavior-based autonomous robotic systems is the first true survey of this robotics field. The author presents the tools and techniques central to the development of this class of systems in a clear and thorough manner. Following a discussion of the relevant biological and psychological models of behavior, he covers the use of knowledge and learning in autonomous robots, behavior-based and hybrid robot architectures, modular perception, robot colonies, and future trends in robot intelligence. The text throughout refers to actual implemented robots and includes many pictures and descriptions of hardware, making it clear that these are not abstract simulations, but real machines capable of perception, cognition, and action.
Computers

Introduction to AI Robotics

Author: Robin Murphy

Publisher: MIT Press

ISBN: 9780262133838

Category: Computers

Page: 466

View: 2581

This text covers all the material needed to understand the principles behind the AI approach to robotics and to program an artificially intelligent robot for applications involving sensing, navigation, planning, and uncertainty. Robin Murphy is extremely effective at combining theoretical and practical rigor with a light narrative touch. In the overview, for example, she touches upon anthropomorphic robots from classic films and science fiction stories before delving into the nuts and bolts of organizing intelligence in robots.Following the overview, Murphy contrasts AI and engineering approaches and discusses what she calls the three paradigms of AI robotics: hierarchical, reactive, and hybrid deliberative/reactive. Later chapters explore multiagent scenarios, navigation and path-planning for mobile robots, and the basics of computer vision and range sensing. Each chapter includes objectives, review questions, and exercises. Many chapters contain one or more case studies showing how the concepts were implemented on real robots. Murphy, who is well known for her classroom teaching, conveys the intellectual adventure of mastering complex theoretical and technical material. An Instructor's Manual including slides, solutions, sample tests, and programming assignments is available to qualified professors who are considering using the book or who are using the book for class use.
Technology & Engineering

Principles of Robot Motion

Theory, Algorithms, and Implementation

Author: Howie M. Choset

Publisher: MIT Press

ISBN: 9780262033275

Category: Technology & Engineering

Page: 603

View: 8330

A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts.
Computers

The Robotics Primer

Author: Maja J. Matarić

Publisher: MIT Press

ISBN: 026263354X

Category: Computers

Page: 306

View: 4351

A broadly accessible introduction to robotics that spans the most basic concepts and the most novel applications; for students, teachers, and hobbyists.

Introduction to Autonomous Robots

Kinematics, Perception, Localization and Planning

Author: Nikolaus Correll

Publisher: N.A

ISBN: 9780692700877

Category:

Page: 226

View: 1446

This book introduces concepts in mobile, autonomous robotics to 3rd-4th year students in Computer Science or a related discipline. The book covers principles of robot motion, forward and inverse kinematics of robotic arms and simple wheeled platforms, perception, error propagation, localization and simultaneous localization and mapping. The cover picture shows a wind-up toy that is smart enough to not fall off a table just using intelligent mechanism design and illustrate the importance of the mechanism in designing intelligent, autonomous systems. This book is open source, open to contributions, and released under a creative common license.
Computers

Modern Robotics

Author: Kevin M. Lynch,Frank C. Park

Publisher: Cambridge University Press

ISBN: 1107156300

Category: Computers

Page: 544

View: 1839

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Technology & Engineering

Autonomous Robots

From Biological Inspiration to Implementation and Control

Author: George A. Bekey

Publisher: MIT Press

ISBN: 9780262025782

Category: Technology & Engineering

Page: 577

View: 4410

An introduction to the science and practice of autonomous robots that reviews over 300 current systems and examines the underlying technology.
Technology & Engineering

Robotics, Vision and Control

Fundamental Algorithms in MATLAB

Author: Peter Corke

Publisher: Springer

ISBN: 9783642201455

Category: Technology & Engineering

Page: 570

View: 3607

The practice of robotics and computer vision both involve the application of computational algorithms to data. Over the fairly recent history of the fields of robotics and computer vision a very large body of algorithms has been developed. However this body of knowledge is something of a barrier for anybody entering the field, or even looking to see if they want to enter the field — What is the right algorithm for a particular problem?, and importantly, How can I try it out without spending days coding and debugging it from the original research papers? The author has maintained two open-source MATLAB Toolboxes for more than 10 years: one for robotics and one for vision. The key strength of the Toolboxes provide a set of tools that allow the user to work with real problems, not trivial examples. For the student the book makes the algorithms accessible, the Toolbox code can be read to gain understanding, and the examples illustrate how it can be used —instant gratification in just a couple of lines of MATLAB code. The code can also be the starting point for new work, for researchers or students, by writing programs based on Toolbox functions, or modifying the Toolbox code itself. The purpose of this book is to expand on the tutorial material provided with the toolboxes, add many more examples, and to weave this into a narrative that covers robotics and computer vision separately and together. The author shows how complex problems can be decomposed and solved using just a few simple lines of code, and hopefully to inspire up and coming researchers. The topics covered are guided by the real problems observed over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes a lot of Matlab examples and figures. The book is a real walk through the fundamentals of robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and epipolar geometry, and bring it all together in a visual servo system. Additional material is provided at http://www.petercorke.com/RVC
Computers

Bio-Inspired Artificial Intelligence

Theories, Methods, and Technologies

Author: Dario Floreano,Claudio Mattiussi

Publisher: MIT Press

ISBN: 0262062712

Category: Computers

Page: 659

View: 8821

New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence -- to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems -- including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.
Technology & Engineering

Advances in Intelligent Robotics and Collaborative Automation

Author: Yuriy P. Kondratenko,Richard J. Duro

Publisher: River Publishers

ISBN: 8793237030

Category: Technology & Engineering

Page: 362

View: 2731

This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them. The contributions of the different authors have been grouped into four main sections: RobotsControl and IntelligenceSensingCollaborative automation The chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area.
Computers

Fundamentals of Machine Learning for Predictive Data Analytics

Algorithms, Worked Examples, and Case Studies

Author: John D. Kelleher,Brian Mac Namee,Aoife D'Arcy

Publisher: MIT Press

ISBN: 0262029448

Category: Computers

Page: 624

View: 7355

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.
Computers

Learning to Learn

Author: Sebastian Thrun,Lorien Pratt

Publisher: Springer Science & Business Media

ISBN: 1461555299

Category: Computers

Page: 354

View: 9034

Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.
Computers

Robot 2015: Second Iberian Robotics Conference

Advances in Robotics

Author: Luís Paulo Reis,António Paulo Moreira,Pedro U. Lima,Luis Montano,Victor Muñoz-Martinez

Publisher: Springer

ISBN: 3319271490

Category: Computers

Page: 771

View: 678

This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other countries. The conference featured 19 special sessions, plus a main/general robotics track. The special sessions were about: Agricultural Robotics and Field Automation; Autonomous Driving and Driver Assistance Systems; Communication Aware Robotics; Environmental Robotics; Social Robotics: Intelligent and Adaptable AAL Systems; Future Industrial Robotics Systems; Legged Locomotion Robots; Rehabilitation and Assistive Robotics; Robotic Applications in Art and Architecture; Surgical Robotics; Urban Robotics; Visual Perception for Autonomous Robots; Machine Learning in Robotics; Simulation and Competitions in Robotics; Educational Robotics; Visual Maps in Robotics; Control and Planning in Aerial Robotics, the XVI edition of the Workshop on Physical Agents and a Special Session on Technological Transfer and Innovation.
Psychology

Principles of Synthetic Intelligence

Psi: An Architecture of Motivated Cognition

Author: Joscha Bach

Publisher: Oxford University Press

ISBN: 9780199708109

Category: Psychology

Page: 400

View: 9027

From the Foreword: "In this book Joscha Bach introduces Dietrich Dörner's PSI architecture and Joscha's implementation of the MicroPSI architecture. These architectures and their implementation have several lessons for other architectures and models. Most notably, the PSI architecture includes drives and thus directly addresses questions of emotional behavior. An architecture including drives helps clarify how emotions could arise. It also changes the way that the architecture works on a fundamental level, providing an architecture more suited for behaving autonomously in a simulated world. PSI includes three types of drives, physiological (e.g., hunger), social (i.e., affiliation needs), and cognitive (i.e., reduction of uncertainty and expression of competency). These drives routinely influence goal formation and knowledge selection and application. The resulting architecture generates new kinds of behaviors, including context dependent memories, socially motivated behavior, and internally motivated task switching. This architecture illustrates how emotions and physical drives can be included in an embodied cognitive architecture. The PSI architecture, while including perceptual, motor, learning, and cognitive processing components, also includes several novel knowledge representations: temporal structures, spatial memories, and several new information processing mechanisms and behaviors, including progress through types of knowledge sources when problem solving (the Rasmussen ladder), and knowledge-based hierarchical active vision. These mechanisms and representations suggest ways for making other architectures more realistic, more accurate, and easier to use. The architecture is demonstrated in the Island simulated environment. While it may look like a simple game, it was carefully designed to allow multiple tasks to be pursued and provides ways to satisfy the multiple drives. It would be useful in its own right for developing other architectures interested in multi-tasking, long-term learning, social interaction, embodied architectures, and related aspects of behavior that arise in a complex but tractable real-time environment. The resulting models are not presented as validated cognitive models, but as theoretical explorations in the space of architectures for generating behavior. The sweep of the architecture can thus be larger-it presents a new cognitive architecture attempting to provide a unified theory of cognition. It attempts to cover perhaps the largest number of phenomena to date. This is not a typical cognitive modeling work, but one that I believe that we can learn much from." --Frank E. Ritter, Series Editor Although computational models of cognition have become very popular, these models are relatively limited in their coverage of cognition-- they usually only emphasize problem solving and reasoning, or treat perception and motivation as isolated modules. The first architecture to cover cognition more broadly is PSI theory, developed by Dietrich Dorner. By integrating motivation and emotion with perception and reasoning, and including grounded neuro-symbolic representations, PSI contributes significantly to an integrated understanding of the mind. It provides a conceptual framework that highlights the relationships between perception and memory, language and mental representation, reasoning and motivation, emotion and cognition, autonomy and social behavior. It is, however, unfortunate that PSI's origin in psychology, its methodology, and its lack of documentation have limited its impact. The proposed book adapts Psi theory to cognitive science and artificial intelligence, by elucidating both its theoretical and technical frameworks, and clarifying its contribution to how we have come to understand cognition.