**Author**: Victor Kac,Pokman Cheung

**Publisher:** Springer Science & Business Media

**ISBN:** 1461300711

**Category:** Mathematics

**Page:** 112

**View:** 6795

Skip to content
# Free eBooks PDF

## Quantum Calculus

Simply put, quantum calculus is ordinary calculus without taking limits. This undergraduate text develops two types of quantum calculi, the q-calculus and the h-calculus. As this book develops quantum calculus along the lines of traditional calculus, the reader discovers, with a remarkable inevitability, many important notions and results of classical mathematics. This book is written at the level of a first course in calculus and linear algebra and is aimed at undergraduate and beginning graduate students in mathematics, computer science, and physics. It is based on lectures and seminars given by MIT Professor Kac over the last few years at MIT.
## Quantum Calculus

The main objective of this book is to extend the scope of the q-calculus based on the definition of q-derivative [Jackson (1910)] to make it applicable to dense domains. As a matter of fact, Jackson's definition of q-derivative fails to work for impulse points while this situation does not arise for impulsive equations on q-time scales as the domains consist of isolated points covering the case of consecutive points. In precise terms, we study quantum calculus on finite intervals. In the first part, we discuss the concepts of qk-derivative and qk-integral, and establish their basic properties. As applications, we study initial and boundary value problems of impulsive qk-difference equations and inclusions equipped with different kinds of boundary conditions. We also transform some classical integral inequalities and develop some new integral inequalities for convex functions in the context of qk-calculus. In the second part, we develop fractional quantum calculus in relation to a new qk-shifting operator and establish some existence and qk uniqueness results for initial and boundary value problems of impulsive fractional qk-difference equations. Contents:PreliminariesQuantum Calculus on Finite IntervalsInitial Value Problems for Impulsive qk-Difference Equations and InclusionsBoundary Value Problems for First-Order Impulsive qk-Integro-Difference Equations and InclusionsImpulsive qk-Difference Equations with Different Kinds of Boundary ConditionsNonlinear Second-Order Impulsive qk-Difference Langevin Equation with Boundary ConditionsQuantum Integral Inequalities on Finite IntervalsImpulsive Quantum Difference Systems with Boundary ConditionsNew Concepts of Fractional Quantum Calculus and Applications to Impulsive Fractional qk-Difference EquationsIntegral Inequalities via Fractional Quantum CalculusNonlocal Boundary Value Problems for Impulsive Fractional qk-Difference EquationsExistence Results for Impulsive Fractional qk-Difference Equations with Anti-periodic Boundary ConditionsImpulsive Fractional qk-Integro-Difference Equations with Boundary ConditionsImpulsive Hybrid Fractional Quantum Difference Equations Readership: Mathematics and physics researchers.
## A Comprehensive Treatment of q-Calculus

To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms.For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Apart from a thorough review of the historical development of q-calculus, this book also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few.
## Applications of q-Calculus in Operator Theory

The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. This monograph is an introduction to combining approximation theory and q-Calculus with applications, by using well- known operators. The presentation is systematic and the authors include a brief summary of the notations and basic definitions of q-calculus before delving into more advanced material. The many applications of q-calculus in the theory of approximation, especially on various operators, which includes convergence of operators to functions in real and complex domain forms the gist of the book. This book is suitable for researchers and students in mathematics, physics and engineering, and for professionals who would enjoy exploring the host of mathematical techniques and ideas that are collected and discussed in the book.
## Quantum Variational Calculus

This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of its results is that they are able to deal with nondifferentiable (even discontinuous) functions, which are important in applications. Possible applications in economics are discussed. Economists model time as continuous or discrete. Although individual economic decisions are generally made at discrete time intervals, they may well be less than perfectly synchronized in ways discrete models postulate. On the other hand, the usual assumption that economic activity takes place continuously, is nothing else than a convenient abstraction that in many applications is far from reality. The Hahn quantum calculus helps to bridge the gap between the two families of models: continuous and discrete. Quantum Variational Calculus is self-contained and unified in presentation. It provides an opportunity for an introduction to the quantum calculus of variations for experienced researchers but may be used as an advanced textbook by graduate students and even ambitious undergraduates as well. The explanations in the book are detailed to capture the interest of the curious reader, and complete to provide the necessary background material needed to go further into the subject and explore the rich research literature, motivating further research activity in the area.
## Calculus Revisited

In this book the details of many calculations are provided for access to work in quantum groups, algebraic differential calculus, noncommutative geometry, fuzzy physics, discrete geometry, gauge theory, quantum integrable systems, braiding, finite topological spaces, some aspects of geometry and quantum mechanics and gravity.
## Quantum Measure Theory

This book is the first systematic treatment of measures on projection lattices of von Neumann algebras. It presents significant recent results in this field. One part is inspired by the Generalized Gleason Theorem on extending measures on the projection lattices of von Neumann algebras to linear functionals. Applications of this principle to various problems in quantum physics are considered (hidden variable problem, Wigner type theorems, decoherence functional, etc.). Another part of the monograph deals with a fascinating interplay of algebraic properties of the projection lattice with the continuity of measures (the analysis of Jauch-Piron states, independence conditions in quantum field theory, etc.). These results have no direct analogy in the standard measure and probability theory. On the theoretical physics side, they are instrumental in recovering technical assumptions of the axiomatics of quantum theories only by considering algebraic properties of finitely additive measures (states) on quantum propositions.
## Extended Graphical Calculus for Categorified Quantum Sl(2)

A categorification of the Beilinson-Lusztig-MacPherson form of the quantum sl(2) was constructed in a paper (arXiv:0803.3652) by Aaron D. Lauda. Here the authors enhance the graphical calculus introduced and developed in that paper to include two-morphisms between divided powers one-morphisms and their compositions. They obtain explicit diagrammatical formulas for the decomposition of products of divided powers one-morphisms as direct sums of indecomposable one-morphisms; the latter are in a bijection with the Lusztig canonical basis elements.

These formulas have integral coefficients and imply that one of the main results of Lauda's paper--identification of the Grothendieck ring of his 2-category with the idempotented quantum sl(2)--also holds when the 2-category is defined over the ring of integers rather than over a field. A new diagrammatic description of Schur functions is also given and it is shown that the the Jacobi-Trudy formulas for the decomposition of Schur functions into elementary or complete symmetric functions follows from the diagrammatic relations for categorified quantum sl(2).
## An Introduction to Quantum Stochastic Calculus

An Introduction to Quantum Stochastic Calculus aims to deepen our understanding of the dynamics of systems subject to the laws of chance both from the classical and the quantum points of view and stimulate further research in their unification. This is probably the first systematic attempt to weave classical probability theory into the quantum framework and provides a wealth of interesting features: The origin of Ito’s correction formulae for Brownian motion and the Poisson process can be traced to commutation relations or, equivalently, the uncertainty principle. Quantum stochastic integration enables the possibility of seeing new relationships between fermion and boson fields. Many quantum dynamical semigroups as well as classical Markov semigroups are realised through unitary operator evolutions. The text is almost self-contained and requires only an elementary knowledge of operator theory and probability theory at the graduate level. - - - This is an excellent volume which will be a valuable companion both to those who are already active in the field and those who are new to it. Furthermore there are a large number of stimulating exercises scattered through the text which will be invaluable to students. (Mathematical Reviews) This monograph gives a systematic and self-contained introduction to the Fock space quantum stochastic calculus in its basic form (...) by making emphasis on the mathematical aspects of quantum formalism and its connections with classical probability and by extensive presentation of carefully selected functional analytic material. This makes the book very convenient for a reader with the probability-theoretic orientation, wishing to make acquaintance with wonders of the noncommutative probability, and, more specifcally, for a mathematics student studying this field. (Zentralblatt MATH) Elegantly written, with obvious appreciation for fine points of higher mathematics (...) most notable is [the] author's effort to weave classical probability theory into [a] quantum framework. (The American Mathematical Monthly)
## Stochastic Processes and Operator Calculus on Quantum Groups

This book aims to present several new developments on stochastic processes and operator calculus on quantum groups. Topics which are treated include operator calculus, dual representations, stochastic processes and diffusions, Appell polynomials and systems in connection with evolution equations. Audience: This volume contains introductory material for graduate students who are new to the field, as well as more advanced material for specialists in probability theory, algebraic structures, representation theory, mathematical physics and theoretical physics.
## Quantum Interaction

This book constitutes the refereed proceedings of the 6th International Symposium on Quantum Interaction, QI 2012, held in Paris in June 2012. The 21 revised full papers presented were carefully reviewed and selected from 32 submissions. The papers cover various topics on quantum interaction.
## Angular Momentum Calculus in Quantum Physics

This book is concerned with the practical aspects of solving angular momentum problems. The novel but fully tested-out method (the Invariant Graph Method) allows one to write down from a single graph the complete final result of the problem. The drawing of the graph involves very few simple, essentially self-evident rules. Still it is a powerful tool to easily solve the most involved physical problems.The method is introduced step-by-step in a sequence of examples, beginning with the simplest matrix elements, and ending with the most general case of a reaction including angular distributions and correlations. The many-body and particle anti-particle systems are fully developed. All aspects: wave functions, vectors, operators, Fock space state vectors and operators, etc., are treated on the same footing. All concepts of angular momentum theory acquire a transparent meaning. Hence the book is valuable not only as a handbook in problem solving, but extremely so as an adjunct in any course on advanced qunatum physics, atomic, molecular, nuclear and particle physics.
## Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules

The authors construct an abstract pseudodifferential calculus with operator-valued symbol, suitable for the treatment of Coulomb-type interactions, and they apply it to the study of the quantum evolution of molecules in the Born-Oppenheimer approximation, in the case of the electronic Hamiltonian admitting a local gap in its spectrum. In particular, they show that the molecular evolution can be reduced to the one of a system of smooth semiclassical operators, the symbol of which can be computed explicitely. In addition, they study the propagation of certain wave packets up to long time values of Ehrenfest order.
## Dynamic Inequalities On Time Scales

This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
## Quantum Logic

In 1936, G. Birkhoff and J. v. Neumann published an article with the title The logic of quantum mechanics'. In this paper, the authors demonstrated that in quantum mechanics the most simple observables which correspond to yes-no propositions about a quantum physical system constitute an algebraic structure, the most important proper ties of which are given by an orthocomplemented and quasimodular lattice Lq. Furthermore, this lattice of quantum mechanical proposi tions has, from a formal point of view, many similarities with a Boolean lattice L8 which is known to be the lattice of classical propositional logic. Therefore, one could conjecture that due to the algebraic structure of quantum mechanical observables a logical calculus Q of quantum mechanical propositions is established, which is slightly different from the calculus L of classical propositional logic but which is applicable to all quantum mechanical propositions (C. F. v. Weizsacker, 1955). This calculus has sometimes been called 'quan tum logic'. However, the statement that propositions about quantum physical systems are governed by the laws of quantum logic, which differ from ordinary classical logic and which are based on the empirically well-established quantum theory, is exposed to two serious objec tions: (a) Logic is a theory which deals with those relationships between various propositions that are valid independent of the content of the respective propositions. Thus, the validity of logical relationships is not restricted to a special type of proposition, e. g. to propositions about classical physical systems.
## Quantum Stochastics

The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigroups and processes, and large-time asymptotic behavior of quantum Markov semigroups.
## Quantum Communication and Quantum Networking

This book constitutes the proceedings of the First International Conference on Quantum Communication and Quantum Networking, QuantumCom 2009, held in Naples, Italy, in October 2009. The 38 full papers were selected from numerous submissions. This conference has been devoted to the discussion of new challenges in quantum communication and quantum networking that extends from the nanoscale devices to global satellite communication networks. It placed particular emphasis on basic quantum science effects and on emerging technological solutions leading to practical applications in the communication industry, culminating with a special section on Hybrid Information Processing.

Just another PDF Download site

Mathematics

Science

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

**Author**: Mikhail Khovanov

**Publisher:** American Mathematical Soc.

**ISBN:** 082188977X

**Category:** Mathematics

**Page:** 87

**View:** 5952

These formulas have integral coefficients and imply that one of the main results of Lauda's paper--identification of the Grothendieck ring of his 2-category with the idempotented quantum sl(2)--also holds when the 2-category is defined over the ring of integers rather than over a field. A new diagrammatic description of Schur functions is also given and it is shown that the the Jacobi-Trudy formulas for the decomposition of Schur functions into elementary or complete symmetric functions follows from the diagrammatic relations for categorified quantum sl(2).

Mathematics

Mathematics

Computers

Science

Mathematics

Mathematics

Science

Mathematics

Computers