Mathematics

Representation Theory

Author: Amritanshu Prasad

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 202

View: 185

This book examines the fundamental results of modern combinatorial representation theory. The exercises are interspersed with text to reinforce readers' understanding of the subject. In addition, each exercise is assigned a difficulty level to test readers' learning. Solutions and hints to most of the exercises are provided at the end.
Mathematics

Lectures on Representation Theory

Author: Jing-Song Huang

Publisher: World Scientific

ISBN:

Category: Mathematics

Page: 189

View: 169

This book is an expanded version of the lectures given at the Nankai Mathematical Summer School in 1997. It provides an introduction to Lie groups, Lie algebras and their representations as well as introduces some directions of current research for graduate students who have little specialized knowledge in representation theory. It only assumes that the reader has a good knowledge of linear algebra and some basic knowledge of abstract algebra.Parts I-III of the book cover the relatively elementary material of representation theory of finite groups, simple Lie algebras and compact Lie groups. These theories are natural continuation of linear algebra. The last chapter of Part III includes some recent results on extension of Weyl's construction to exceptional groups. Part IV covers some advanced material on infinite-dimensional representations of non-compact groups such as the orbit method, minimal representations and dual pair correspondences, which introduces some directions of the current research in representation theory.
Mathematics

Representation Theory

Author: William Fulton

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 551

View: 967

The primary goal of these lectures is to introduce a beginner to the finite dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for such people that this text is designed. To put it another way, we intend this as a book for beginners to learn from and not as a reference. This idea essentially determines the choice of material covered here. As simple as is the definition of representation theory given above, it fragments considerably when we try to get more specific.
Mathematics

Pioneers of Representation Theory

Author: Charles W. Curtis

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 287

View: 824

The year 1897 was marked by two important mathematical events: the publication of the first paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appearance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927). Burnside soon developed his own approach to representations of finite groups. In the next few years, working independently, Frobenius and Burnside explored the new subject and its applications to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941) and some years later, by Richard Brauer (1901-1977). These mathematicians' pioneering research is the subject of this book. It presents an account of the early history of representation theory through an analysis of the published work of the principals and others with whom the principals' work was interwoven. Also included are biographical sketches and enough mathematics to enable readers to follow the development of the subject. An introductory chapter contains some of the results involving characters of finite abelian groups by Lagrange, Gauss, and Dirichlet, which were part of the mathematical tradition from which Frobenius drew his inspiration. This book presents the early history of an active branch of mathematics. It includes enough detail to enable readers to learn the mathematics along with the history. The volume would be a suitable text for a course on representations of finite groups, particularly one emphasizing an historical point of view. Co-published with the London Mathematical Society. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.
Mathematics

Geometric Representation Theory and Extended Affine Lie Algebras

Author: Erhard Neher

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 213

View: 448

Lie theory has connections to many other disciplines such as geometry, number theory, mathematical physics, and algebraic combinatorics. The interaction between algebra, geometry and combinatorics has proven to be extremely powerful in shedding new light on each of these areas. This book presents the lectures given at the Fields Institute Summer School on Geometric Representation Theory and Extended Affine Lie Algebras held at the University of Ottawa in 2009. It provides a systematic account by experts of some of the exciting developments in Lie algebras and representation theory in the last two decades. It includes topics such as geometric realizations of irreducible representations in three different approaches, combinatorics and geometry of canonical and crystal bases, finite $W$-algebras arising as the quantization of the transversal slice to a nilpotent orbit, structure theory of extended affine Lie algebras, and representation theory of affine Lie algebras at level zero. This book will be of interest to mathematicians working in Lie algebras and to graduate students interested in learning the basic ideas of some very active research directions. The extensive references in the book will be helpful to guide non-experts to the original sources.
Mathematics

Introduction to Lie Algebras and Representation Theory

Author: JAMES HUMPHREYS

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 173

View: 230

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Mathematics

Representation Theory, Dynamical Systems, and Asymptotic Combinatorics

Author: Vadim A. Kaimanovich

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 246

View: 727

This volume, devoted to the 70th birthday of the well-known St. Petersburg mathematician A. M. Vershik, contains a collection of articles by participants in the conference ""Representation Theory, Dynamical Systems, and Asymptotic Combinatorics"", held in St. Petersburg in June of 2004. The book is suitable for graduate students and researchers interested in combinatorial and dynamical aspects of group representation theory.