Mathematics

Representation Theory

Author: Amritanshu Prasad

Publisher: Cambridge University Press

ISBN: 1107082056

Category: Mathematics

Page: 202

View: 5929

This book examines the fundamental results of modern combinatorial representation theory. The exercises are interspersed with text to reinforce readers' understanding of the subject. In addition, each exercise is assigned a difficulty level to test readers' learning. Solutions and hints to most of the exercises are provided at the end.
Mathematics

Representation Theory

A First Course

Author: William Fulton,Joe Harris

Publisher: Springer Science & Business Media

ISBN: 9780387974958

Category: Mathematics

Page: 551

View: 9178

Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Mathematics

Elements of the Representation Theory of Associative Algebras: Volume 1

Techniques of Representation Theory

Author: Ibrahim Assem,Daniel Simson,Andrzej Skowronski

Publisher: Cambridge University Press

ISBN: 9780521584234

Category: Mathematics

Page: 472

View: 5205

Provides an elementary but up-to-date introduction to the representation theory of algebras.
Mathematics

Operators and Representation Theory

Canonical Models for Algebras of Operators Arising in Quantum Mechanics

Author: P.E.T. Jorgensen

Publisher: Elsevier

ISBN: 9780080872582

Category: Mathematics

Page: 336

View: 8146

Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas. This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly elegant manner by the use of Lie algebras, extensions, and projective representations. In several cases, this Lie algebraic approach to questions in mathematical physics and C*-algebra theory is new; for example, the Lie algebraic treatment of the spectral theory of curved magnetic field Hamiltonians, the treatment of irrational rotation type algebras, and the Virasoro algebra. Also examined are C*-algebraic methods used (in non-traditional ways) in the study of representations of infinite-dimensional Lie algebras and their extensions, and the methods developed by A. Connes and M.A. Rieffel for the study of the Yang-Mills problem. Cutting across traditional separations between fields of specialization, the book addresses a broad audience of graduate students and researchers.
Mathematics

Linear Analysis and Representation Theory

Author: Steven A. Gaal

Publisher: Springer Science & Business Media

ISBN: 3642807410

Category: Mathematics

Page: 690

View: 1864

In an age when more and more items. are made to be quickly disposable or soon become obsolete due to either progress or other man caused reasons it seems almost anachronistic to write a book in the classical sense. A mathematics book becomes an indespensible companion, if it is worthy of such a relation, not by being rapidly read from cover to cover but by frequent browsing, consultation and other occasional use. While trying to create such a work I tried not to be encyclopedic but rather select only those parts of each chosen topic which I could present clearly and accurately in a formulation which is likely to last. The material I chose is all mathematics which is interesting and important both for the mathematician and to a large extent also for the mathematical physicist. I regret that at present I could not give a similar account on direct integrals and the representation theory of certain classes of Lie groups. I carefully kept the level of presentation throughout the whole book as uniform as possible. Certain introductory sections are kept shorter and are perhaps slightly more detailed in order to help the newcomer prog ress with it at the same rate as the more experienced person is going to proceed with his study of the details.
Mathematics

Representation Theory

Selected Papers

Author: Izrailʹ Moiseevich Gelʹfand

Publisher: Cambridge University Press

ISBN: 0521289815

Category: Mathematics

Page: 272

View: 5893

The unifying theme of this collection of papers by the very creative Russian mathematician I. M. Gelfand and his co-workers is the representation theory of groups and lattices. Two of the papers were inspired by application to theoretical physics; the others are pure mathematics though all the papers will interest mathematicians at quite opposite ends of the subject. Dr. G. Segal and Professor C-M. Ringel have written introductions to the papers which explain the background, put them in perspective and make them accessible to those with no specialist knowledge in the area.

Representation Theory of Lie Groups

Author: Jeffrey Adams, David Vogan

Publisher: American Mathematical Soc.

ISBN: 9780821886908

Category:

Page: N.A

View: 3306

This book contains written versions of the lectures given at the PCMI Graduate Summer School on the representation theory of Lie groups. The volume begins with lectures by A. Knapp and P. Trapa outlining the state of the subject around the year 1975, specifically, the fundamental results of Harish-Chandra on the general structure of infinite-dimensional representations and the Langlands classification. Additional contributions outline developments in four of the most active areas of research over the past 20 years. The clearly written articles present results to date, as follows: R. Zierau and L. Barchini discuss the construction of representations on Dolbeault cohomology spaces. D. Vogan describes the status of the Kirillov-Kostant ``philosophy of coadjoint orbits'' for unitary representations. K. Vilonen presents recent advances in the Beilinson-Bernstein theory of ``localization''. And Jian-Shu Li covers Howe's theory of ``dual reductive pairs''. Each contributor to the volume presents the topics in a unique, comprehensive, and accessible manner geared toward advanced graduate students and researchers. Students should have completed the standard introductory graduate courses for full comprehension of the work. The book would also serve well as a supplementary text for a course on introductory infinite-dimensional representation theory.
Mathematics

An Introduction to Group Representation Theory

Author: N.A

Publisher: Academic Press

ISBN: 9780080956251

Category: Mathematics

Page: 322

View: 8406

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering
Mathematics

Local Representation Theory

Modular Representations as an Introduction to the Local Representation Theory of Finite Groups

Author: J. L. Alperin

Publisher: Cambridge University Press

ISBN: 9780521449267

Category: Mathematics

Page: 178

View: 7663

The aim of this text is to present some of the key results in the representation theory of finite groups. In order to keep the account reasonably elementary, so that it can be used for graduate-level courses, Professor Alperin has concentrated on local representation theory, emphasising module theory throughout. In this way many deep results can be obtained rather quickly. After two introductory chapters, the basic results of Green are proved, which in turn lead in due course to Brauer's First Main Theorem. A proof of the module form of Brauer's Second Main Theorem is then presented, followed by a discussion of Feit's work connecting maps and the Green correspondence. The work concludes with a treatment, new in part, of the Brauer-Dade theory. As a text, this book contains ample material for a one semester course. Exercises are provided at the end of most sections; the results of some are used later in the text. Representation theory is applied in number theory, combinatorics and in many areas of algebra. This book will serve as an excellent introduction to those interested in the subject itself or its applications.
Mathematics

Representation Theory, Dynamical Systems, and Asymptotic Combinatorics

Author: Vadim A. Kaimanovich,Andrei Lodkin

Publisher: American Mathematical Soc.

ISBN: 0821842080

Category: Mathematics

Page: 246

View: 8548

This volume, devoted to the 70th birthday of the well-known St. Petersburg mathematician A. M. Vershik, contains a collection of articles by participants in the conference ""Representation Theory, Dynamical Systems, and Asymptotic Combinatorics"", held in St. Petersburg in June of 2004. The book is suitable for graduate students and researchers interested in combinatorial and dynamical aspects of group representation theory.
Mathematics

Representation Theory of Algebras

Seventh International Conference on Representations of Algebras, August 22-26, 1994, Cocoyoc, Mexico

Author: Raymundo Bautista,Roberto Martínez-Villa,Jos?e Antonio de la Pe?na

Publisher: American Mathematical Soc.

ISBN: 9780821803950

Category: Mathematics

Page: 749

View: 1797

The ICRA VII was held at Cocoyoc, Mexico, in August 1994. This was the second time that the ICRA was held in Mexico: ICRA III took place in Puebla in 1980. The 1994 conference included 62 lectures, all listed in these Proceedings. Not all contributions presented, however, appear in this book. Most papers in this volume are in final form with complete proofs, with the only exception being the paper of Leszczynski and Skowronski, Auslander algebras of tame representation type, that the editors thought useful to include.
Mathematics

Introduction to Lie Algebras and Representation Theory

Author: J.E. Humphreys

Publisher: Springer Science & Business Media

ISBN: 1461263980

Category: Mathematics

Page: 173

View: 2231

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Mathematics

Pioneers of Representation Theory

Frobenius, Burnside, Schur, and Brauer

Author: Charles W. Curtis

Publisher: American Mathematical Soc.

ISBN: 9780821896723

Category: Mathematics

Page: 287

View: 2828

The year 1897 was marked by two important mathematical events: the publication of the first paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appearance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927). Burnside soon developed his own approach to representations of finite groups. In the next few years, working independently, Frobenius and Burnside explored the new subject and its applications to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941) and some years later, by Richard Brauer (1901-1977). These mathematicians' pioneering research is the subject of this book. It presents an account of the early history of representation theory through an analysis of the published work of the principals and others with whom the principals' work was interwoven. Also included are biographical sketches and enough mathematics to enable readers to follow the development of the subject. An introductory chapter contains some of the results involving characters of finite abelian groups by Lagrange, Gauss, and Dirichlet, which were part of the mathematical tradition from which Frobenius drew his inspiration. This book presents the early history of an active branch of mathematics. It includes enough detail to enable readers to learn the mathematics along with the history. The volume would be a suitable text for a course on representations of finite groups, particularly one emphasizing an historical point of view. Co-published with the London Mathematical Society. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.
Mathematics

Introduction to Lie Algebras and Representation Theory

Author: JAMES HUMPHREYS

Publisher: Springer Science & Business Media

ISBN: 9780387900537

Category: Mathematics

Page: 173

View: 2982

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Mathematics

Representation Theory of Algebras and Related Topics

Proceedings of the Workshop at UNAM, Mexico, August 16-20, 1994

Author: Raymundo Bautista,Roberto Martínez-Villa,Jos?e Antonio de la Pe?na

Publisher: American Mathematical Soc.

ISBN: 9780821803967

Category: Mathematics

Page: 406

View: 2129

These proceedings report a number of lecture series delivered during the Workshop on Representation Theory of Algebras and Related Topics held at Universidad Nacional Autonoma de Mexico (UNAM) in August 1994. The workshop was dedicated to recent advances in the field and its interaction with other areas of mathematics, such as algebraic geometry, ring theory, and representation of groups. The program of the Workshop consisted of 9 lecture series. In addition there was a Tame Day consisting of 6 lectures reporting on the recent advances in the study of tame algebras and their module categories. During the Workshop there was a session devoted to the exhibition of computer programs developed by participants. These programs are implementations of algorithms related to the calculation of important aspects of algebras and their module categories.
Mathematics

Harmonic Analysis and Representation Theory for Groups Acting on Homogenous Trees

Author: Alessandro Figá-Talamanca,Claudio Nebbia

Publisher: Cambridge University Press

ISBN: 0521424445

Category: Mathematics

Page: 151

View: 8041

These notes treat in full detail the theory of representations of the group of automorphisms of a homogeneous tree. The unitary irreducible representations are classified in three types: a continuous series of spherical representations; two special representations; and a countable series of cuspidal representations as defined by G.I. Ol'shiankii. Several notable subgroups of the full automorphism group are also considered. The theory of spherical functions as eigenvalues of a Laplace (or Hecke) operator on the tree is used to introduce spherical representations and their restrictions to discrete subgroups. This will be an excellent companion for all researchers into harmonic analysis or representation theory.