Rudiments of Algebraic Geometry

Author: W.E. Jenner

Publisher: Courier Dover Publications

ISBN: 0486818063

Category: Mathematics

Page: 112

View: 1471

Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

Foundations of Algebraic Geometry

Author: AndrŽ Weil

Publisher: American Mathematical Soc.

ISBN: 0821810294

Category: Mathematics

Page: 363

View: 5662

This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.

Algebraic Geometry

Author: Solomon Lefschetz

Publisher: Princeton University Press

ISBN: 1400876680

Category: Mathematics

Page: 244

View: 6580

The first application of modern algebraic techniques to a comprehensive selection of classical geometric problems. Written with spirit and originality, this is a valuable book for anyone interested in the subject from other than the purely algebraic point of view. Originally published in 1953. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 3319

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

A Primer of Algebraic Geometry

Constructive Computational Methods

Author: Huishi Li,Freddy Van Oystaeyen

Publisher: CRC Press

ISBN: 9780824703745

Category: Mathematics

Page: 392

View: 8911

"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."

Plane Algebraic Curves


Publisher: Birkhäuser

ISBN: 3034850972

Category: Mathematics

Page: 721

View: 9005


Lectures on Curves, Surfaces and Projective Varieties

A Classical View of Algebraic Geometry

Author: Mauro Beltrametti

Publisher: European Mathematical Society

ISBN: 9783037190647

Category: Mathematics

Page: 491

View: 9486

This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students of the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses on the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.

Algebraic Geometry

A Problem Solving Approach

Author: Thomas A. Garrity

Publisher: American Mathematical Soc.

ISBN: 0821893963

Category: Mathematics

Page: 335

View: 9449

Algebraic Geometry has been at the center of much of mathematics for hundreds of years. It is not an easy field to break into, despite its humble beginnings in the study of circles, ellipses, hyperbolas, and parabolas. This text consists of a series of ex

Lectures on Invariant Theory

Author: Igor Dolgachev

Publisher: Cambridge University Press

ISBN: 9780521525480

Category: Mathematics

Page: 220

View: 5727

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Introduction to the Theory of Schemes

Author: Yuri I. Manin

Publisher: Springer

ISBN: 3319743163

Category: Mathematics

Page: 205

View: 3231

This English edition of Yuri I. Manin's well-received lecture notes provides a concise but extremely lucid exposition of the basics of algebraic geometry and sheaf theory. The lectures were originally held in Moscow in the late 1960s, and the corresponding preprints were widely circulated among Russian mathematicians. This book will be of interest to students majoring in algebraic geometry and theoretical physics (high energy physics, solid body, astrophysics) as well as to researchers and scholars in these areas. "This is an excellent introduction to the basics of Grothendieck's theory of schemes; the very best first reading about the subject that I am aware of. I would heartily recommend every grad student who wants to study algebraic geometry to read it prior to reading more advanced textbooks."- Alexander Beilinson

Foundations of Differentiable Manifolds and Lie Groups

Author: Frank W. Warner

Publisher: Springer Science & Business Media

ISBN: 1475717997

Category: Mathematics

Page: 276

View: 2950

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Enumerative Geometry and String Theory

Author: Sheldon Katz

Publisher: American Mathematical Soc.

ISBN: 0821836870

Category: Mathematics

Page: 206

View: 1806

Perhaps the most famous example of how ideas from modern physics have revolutionized mathematics is the way string theory has led to an overhaul of enumerative geometry, an area of mathematics that started in the eighteen hundreds. Century-old problems of enumerating geometric configurations have now been solved using new and deep mathematical techniques inspired by physics!The book begins with an insightful introduction to enumerative geometry. From there, the goal becomes explaining the more advanced elements of enumerative algebraic geometry. Along the way, there are some crash courses on intermediate topics which are essential tools for the student of modern mathematics, such as cohomology and other topics in geometry. The physics content assumes nothing beyond a first undergraduate course. The focus is on explaining the action principle in physics, the idea of string theory, and how these directly lead to questions in geometry. Once these topics are in place, the connection between physics and enumerative geometry is made with the introduction of topological quantum field theory and quantum cohomology.

Discourses on Algebra

Author: Igor R. Shafarevich

Publisher: Springer Science & Business Media

ISBN: 3642563252

Category: Mathematics

Page: 279

View: 352

Using various examples this monograph shows that algebra is one of the most beautiful forms of mathematics. In doing so, it explains the basics of algebra, number theory, set theory and probability. The text presupposes very limited knowledge of mathematics, making it an ideal read for anybody new to the subject. The author, I.R. Shafarevich, is well-known across the world as one of the most outstanding mathematicians of this century as well as one of the most respected mathematical writers.

Geometrical Methods of Mathematical Physics

Author: Bernard F. Schutz

Publisher: Cambridge University Press

ISBN: 1107268141

Category: Science

Page: N.A

View: 2119

In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.

Basic Abstract Algebra

For Graduate Students and Advanced Undergraduates

Author: Robert B. Ash

Publisher: Courier Corporation

ISBN: 0486318117

Category: Mathematics

Page: 432

View: 2645

Relations between groups and sets, results and methods of abstract algebra in terms of number theory and geometry, and noncommutative and homological algebra. Solutions. 2006 edition.

Basic Algebraic Geometry 2

Schemes and Complex Manifolds

Author: Igor R. Shafarevich

Publisher: Springer Science & Business Media

ISBN: 3642380107

Category: Mathematics

Page: 262

View: 1495

Shafarevich's Basic Algebraic Geometry has been a classic and universally used introduction to the subject since its first appearance over 40 years ago. As the translator writes in a prefatory note, ``For all [advanced undergraduate and beginning graduate] students, and for the many specialists in other branches of math who need a liberal education in algebraic geometry, Shafarevich’s book is a must.'' The second volume is in two parts: Book II is a gentle cultural introduction to scheme theory, with the first aim of putting abstract algebraic varieties on a firm foundation; a second aim is to introduce Hilbert schemes and moduli spaces, that serve as parameter spaces for other geometric constructions. Book III discusses complex manifolds and their relation with algebraic varieties, Kähler geometry and Hodge theory. The final section raises an important problem in uniformising higher dimensional varieties that has been widely studied as the ``Shafarevich conjecture''. The style of Basic Algebraic Geometry 2 and its minimal prerequisites make it to a large extent independent of Basic Algebraic Geometry 1, and accessible to beginning graduate students in mathematics and in theoretical physics.

Analytical Geometry

Author: Izu Vaisman

Publisher: World Scientific

ISBN: 9789810231583

Category: Mathematics

Page: 284

View: 496

This volume discusses the classical subjects of Euclidean, affine and projective geometry in two and three dimensions, including the classification of conics and quadrics, and geometric transformations. These subjects are important both for the mathematical grounding of the student and for applications to various other subjects. They may be studied in the first year or as a second course in geometry.The material is presented in a geometric way, and it aims to develop the geometric intuition and thinking of the student, as well as his ability to understand and give mathematical proofs. Linear algebra is not a prerequisite, and is kept to a bare minimum.The book includes a few methodological novelties, and a large number of exercises and problems with solutions. It also has an appendix about the use of the computer program MAPLEV in solving problems of analytical and projective geometry, with examples.