Mathematics

Introduction to the Calculus of Variations and Control with Modern Applications

Author: John A. Burns

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 562

View: 223

Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions and discusses the importance of distinguishing between the necessary and sufficient conditions. In the first part of the text, the author develops the calculus of variations and provides complete proofs of the main results. He explains how the ideas behind the proofs are essential to the development of modern optimization and control theory. Focusing on optimal control problems, the second part shows how optimal control is a natural extension of the classical calculus of variations to more complex problems. By emphasizing the basic ideas and their mathematical development, this book gives you the foundation to use these mathematical tools to then tackle new problems. The text moves from simple to more complex problems, allowing you to see how the fundamental theory can be modified to address more difficult and advanced challenges. This approach helps you understand how to deal with future problems and applications in a realistic work environment.
Mathematics

The Finite Element Method

Author: A. J. Davies

Publisher: Oxford University Press

ISBN:

Category: Mathematics

Page: 297

View: 835

An introduction to the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. Contains worked examples throughout and each chapter has a set of exercises with detailed solutions.
Technology & Engineering

Mathematical Theory of Elasticity of Quasicrystals and Its Applications

Author: Tianyou Fan

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 350

View: 268

This inter-disciplinary work covering the continuum mechanics of novel materials, condensed matter physics and partial differential equations discusses the mathematical theory of elasticity of quasicrystals (a new condensed matter) and its applications by setting up new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions. The new theories developed here dramatically simplify the solving of complicated elasticity equation systems. Large numbers of complicated equations involving elasticity are reduced to a single or a few partial differential equations of higher order. Systematical and direct methods of mathematical physics and complex variable functions are developed to solve the equations under appropriate boundary value and initial value conditions, and many exact analytical solutions are constructed. The dynamic and non-linear analysis of deformation and fracture of quasicrystals in this volume presents an innovative approach. It gives a clear-cut, strict and systematic mathematical overview of the field. Comprehensive and detailed mathematical derivations guide readers through the work. By combining mathematical calculations and experimental data, theoretical analysis and practical applications, and analytical and numerical studies, readers will gain systematic, comprehensive and in-depth knowledge on continuum mechanics, condensed matter physics and applied mathematics.
Science

Mechanics of Structures

Author: Walter Wunderlich

Publisher: CRC Press

ISBN:

Category: Science

Page: 912

View: 297

Resoundingly popular in its first edition, the second edition of Mechanics of Structures: Variational and Computational Methods promises to be even more so, with broader coverage, expanded discussions, and a streamlined presentation. The authors begin by describing the behavior of deformable solids through the differential equations for the strength of materials and the theory of elasticity. They next introduce variational principles, including mixed or generalized principles, and derive integral forms of the governing equations. Discussions then move to computational methods, including the finite element method, and these are developed to solve the differential and integral equations. New in the second edition: A one-dimensional introduction to the finite element method, complete with illustrations of numerical mesh refinement Expansion of the use of Galerkin's method. Discussion of recent developments in the theory of bending and torsion of thin-walled beams. An appendix summarizing the fundamental equations in differential and variational form Completely new treatment of stability, including detailed examples Discussion of the principal values of geometric properties and stresses Additional exercises As a textbook or as a reference, Mechanics of Structures builds a unified, variational foundation for structure mechanics, which in turn forms the basis for the computational solid mechanics so essential to modern engineering.
Technology & Engineering

Analysis of Aircraft Structures

Author: Bruce K. Donaldson

Publisher: Cambridge University Press

ISBN:

Category: Technology & Engineering

Page: 932

View: 106

As with the first edition, this textbook provides a clear introduction to the fundamental theory of structural analysis as applied to vehicular structures such as aircraft, spacecraft, automobiles and ships. The emphasis is on the application of fundamental concepts of structural analysis that are employed in everyday engineering practice. All approximations are accompanied by a full explanation of their validity. In this new edition, more topics, figures, examples and exercises have been added. There is also a greater emphasis on the finite element method of analysis. Clarity remains the hallmark of this text and it employs three strategies to achieve clarity of presentation: essential introductory topics are covered, all approximations are fully explained and many important concepts are repeated.
Technology & Engineering

Computational Analysis and Design of Bridge Structures

Author: Chung C. Fu

Publisher: CRC Press

ISBN:

Category: Technology & Engineering

Page: 631

View: 474

Gain Confidence in Modeling Techniques Used for Complicated Bridge Structures Bridge structures vary considerably in form, size, complexity, and importance. The methods for their computational analysis and design range from approximate to refined analyses, and rapidly improving computer technology has made the more refined and complex methods of analyses more commonplace. The key methods of analysis and related modeling techniques are set out, mainly for highway bridges, but also with some information on railway bridges. Special topics such as strut-and-tie modeling, linear and nonlinear buckling analysis, redundancy analysis, integral bridges, dynamic/earthquake analysis, and bridge geometry are also covered. The material is largely code independent. The book is written for students, especially at MSc level, and for practicing professionals in bridge design offices and bridge design authorities worldwide. Effectively Analyze Structures Using Simple Mathematical Models Divided into three parts and comprised of 18 chapters, this text: Covers the methods of computational analysis and design suitable for bridge structures Provides information on the methods of analysis and related modeling techniques suitable for the design and evaluation of various types of bridges Presents material on a wide range of bridge structural types and is fairly code independent Computational Analysis and Design of Bridge Structures covers the general aspects of bridges, bridge behavior and the modeling of bridges, and special topics on bridges. This text explores the physical meanings behind modeling, and reveals how bridge structures can be analyzed using mathematical models.
Technology & Engineering

Finite Elements for Analysis and Design

Author: J. E. Akin

Publisher: Elsevier

ISBN:

Category: Technology & Engineering

Page: 560

View: 259

The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material. Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing Basic theory has been added in the book, including worked examples to enable students to understand the concepts Contains coverage of computational topics, including worked examples to enable students to understand concepts Improved coverage of sensitivity analysis and computational fluid dynamics Uses example applications to increase students' understanding Includes a disk with the FORTRAN source for the programs cided in the text
Technology & Engineering

Finite Elements in Fracture Mechanics

Author: Meinhard Kuna

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 447

View: 819

Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.
Technology & Engineering

The Finite Element Method in Engineering

Author: Singiresu S. Rao

Publisher: Elsevier

ISBN:

Category: Technology & Engineering

Page: 726

View: 728

The Finite Element Method in Engineering, Fifth Edition, provides a complete introduction to finite element methods with applications to solid mechanics, fluid mechanics, and heat transfer. Written by bestselling author S.S. Rao, this book provides students with a thorough grounding of the mathematical principles for setting up finite element solutions in civil, mechanical, and aerospace engineering applications. The new edition of this textbook includes examples using modern computer tools such as MatLab, Ansys, Nastran, and Abaqus. This book discusses a wide range of topics, including discretization of the domain; interpolation models; higher order and isoparametric elements; derivation of element matrices and vectors; assembly of element matrices and vectors and derivation of system equations; numerical solution of finite element equations; basic equations of fluid mechanics; inviscid and irrotational flows; solution of quasi-harmonic equations; and solutions of Helmhotz and Reynolds equations. New to this edition are examples and applications in Matlab, Ansys, and Abaqus; structured problem solving approach in all worked examples; and new discussions throughout, including the direct method of deriving finite element equations, use of strong and weak form formulations, complete treatment of dynamic analysis, and detailed analysis of heat transfer problems. All figures are revised and redrawn for clarity. This book will benefit professional engineers, practicing engineers learning finite element methods, and students in mechanical, structural, civil, and aerospace engineering. Examples and applications in Matlab, Ansys, and Abaqus Structured problem solving approach in all worked examples New discussions throughout, including the direct method of deriving finite element equations, use of strong and weak form formulations, complete treatment of dynamic analysis, and detailed analysis of heat transfer problems More examples and exercises All figures revised and redrawn for clarity