**Author**: C.H.Jr. Edwards

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Mathematics

**Page:** 368

**View:** 895

Skip to content
# Free eBooks PDF

## The Historical Development of the Calculus

The calculus has served for three centuries as the principal quantitative language of Western science. In the course of its genesis and evolution some of the most fundamental problems of mathematics were first con fronted and, through the persistent labors of successive generations, finally resolved. Therefore, the historical development of the calculus holds a special interest for anyone who appreciates the value of a historical perspective in teaching, learning, and enjoying mathematics and its ap plications. My goal in writing this book was to present an account of this development that is accessible, not solely to students of the history of mathematics, but to the wider mathematical community for which my exposition is more specifically intended, including those who study, teach, and use calculus. The scope of this account can be delineated partly by comparison with previous works in the same general area. M. E. Baron's The Origins of the Infinitesimal Calculus (1969) provides an informative and reliable treat ment of the precalculus period up to, but not including (in any detail), the time of Newton and Leibniz, just when the interest and pace of the story begin to quicken and intensify. C. B. Boyer's well-known book (1949, 1959 reprint) met well the goals its author set for it, but it was more ap propriately titled in its original edition-The Concepts of the Calculus than in its reprinting.
## Turning Points in the History of Mathematics

This book explores some of the major turning points in the history of mathematics, ranging from ancient Greece to the present, demonstrating the drama that has often been a part of its evolution. Studying these breakthroughs, transitions, and revolutions, their stumbling-blocks and their triumphs, can help illuminate the importance of the history of mathematics for its teaching, learning, and appreciation. Some of the turning points considered are the rise of the axiomatic method (most famously in Euclid), and the subsequent major changes in it (for example, by David Hilbert); the “wedding,” via analytic geometry, of algebra and geometry; the “taming” of the infinitely small and the infinitely large; the passages from algebra to algebras, from geometry to geometries, and from arithmetic to arithmetics; and the revolutions in the late nineteenth and early twentieth centuries that resulted from Georg Cantor’s creation of transfinite set theory. The origin of each turning point is discussed, along with the mathematicians involved and some of the mathematics that resulted. Problems and projects are included in each chapter to extend and increase understanding of the material. Substantial reference lists are also provided. Turning Points in the History of Mathematics will be a valuable resource for teachers of, and students in, courses in mathematics or its history. The book should also be of interest to anyone with a background in mathematics who wishes to learn more about the important moments in its development.
## An Annotated Timeline of Operations Research

An Annotated Timeline of Operations Research: An Informal History recounts the evolution of Operations Research (OR) as a new science - the science of decision making. Arising from the urgent operational issues of World War II, the philosophy and methodology of OR has permeated the resolution of decision problems in business, industry, and government. The Timeline chronicles the history of OR in the form of self-contained, expository entries. Each entry presents a concise explanation of the events and people under discussion, and provides key sources where further relevant information can be obtained. In addition, books and papers that have influenced the development of OR or helped to educate the first generations of OR academics and practitioners are cited throughout the book. Starting in 1564 with seminal ideas that form the precursors of OR, the Timeline traces the key ideas and events of OR through 2004. The Timeline should interest anyone involved in OR - researchers, practitioners, academics, and, especially, students - who wish to learn how OR came into being. Further, the scope and expository style of the Timeline should make it of value to the general reader interested in the development of science and technology in the last half of the twentieth century.
## Calculus of Variations

This textbook on the calculus of variations covers from the basics to the modern aspects of the theory.
## Mathematical Time Capsules

Mathematical Time Capsules offers teachers historical modules for immediate use in the mathematics classroom. Readers will find articles and activities from mathematics history that enhance the learning of topics covered in the undergraduate or secondary mathematics curricula. Each capsule presents at least one topic or a historical thread that can be used throughout a course. The capsules were written by experienced practitioners to provide teachers with historical background and classroom activities designed for immediate use in the classroom, along with further references and resources on the chapter subject. --Publisher description.
## Writing the History of Mathematics: Its Historical Development

As an historiographic monograph, this book offers a detailed survey of the professional evolution and significance of an entire discipline devoted to the history of science. It provides both an intellectual and a social history of the development of the subject from the first such effort written by the ancient Greek author Eudemus in the Fourth Century BC, to the founding of the international journal, Historia Mathematica, by Kenneth O. May in the early 1970s.
## Elements of the History of Mathematics

Each volume of Nicolas Bourbakis well-known work, The Elements of Mathematics, contains a section or chapter devoted to the history of the subject. This book collects together those historical segments with an emphasis on the emergence, development, and interaction of the leading ideas of the mathematical theories presented in the Elements. In particular, the book provides a highly readable account of the evolution of algebra, geometry, infinitesimal calculus, and of the concepts of number and structure, from the Babylonian era through to the 20th century.
## A History of the Central Limit Theorem

This study discusses the history of the central limit theorem and related probabilistic limit theorems from about 1810 through 1950. In this context the book also describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The central limit theorem was originally deduced by Laplace as a statement about approximations for the distributions of sums of independent random variables within the framework of classical probability, which focused upon specific problems and applications. Making this theorem an autonomous mathematical object was very important for the development of modern probability theory.
## History in Mathematics Education

This ground-breaking book investigates how the learning and teaching of mathematics can be improved through integrating the history of mathematics into all aspects of mathematics education: lessons, homework, texts, lectures, projects, assessment, and curricula. It draws upon evidence from the experience of teachers as well as national curricula, textbooks, teacher education practices, and research perspectives across the world. It includes a 300-item annotated bibliography of recent work in the field in eight languages.

Just another PDF Download site

Mathematics

Mathematics

Business & Economics

Mathematics

MATHEMATICS

Mathematics

Mathematics

Mathematics

Education