*A Guide to Completeness Theorems and their Applications*

**Author**: Richard W. Kaye

**Publisher:** Cambridge University Press

**ISBN:** 1139467212

**Category:** Mathematics

**Page:** N.A

**View:** 928

Skip to content
# Free eBooks PDF

## The Mathematics of Logic

This undergraduate textbook covers the key material for a typical first course in logic, in particular presenting a full mathematical account of the most important result in logic, the Completeness Theorem for first-order logic. Looking at a series of interesting systems, increasing in complexity, then proving and discussing the Completeness Theorem for each, the author ensures that the number of new concepts to be absorbed at each stage is manageable, whilst providing lively mathematical applications throughout. Unfamiliar terminology is kept to a minimum, no background in formal set-theory is required, and the book contains proofs of all the required set theoretical results. The reader is taken on a journey starting with König's Lemma, and progressing via order relations, Zorn's Lemma, Boolean algebras, and propositional logic, to completeness and compactness of first-order logic. As applications of the work on first-order logic, two final chapters provide introductions to model theory and nonstandard analysis.
## Mathematical Logic

A comprehensive and user-friendly guide to the use of logic inmathematical reasoning Mathematical Logic presents a comprehensive introductionto formal methods of logic and their use as a reliable tool fordeductive reasoning. With its user-friendly approach, this booksuccessfully equips readers with the key concepts and methods forformulating valid mathematical arguments that can be used touncover truths across diverse areas of study such as mathematics,computer science, and philosophy. The book develops the logical tools for writing proofs byguiding readers through both the established "Hilbert" style ofproof writing, as well as the "equational" style that is emergingin computer science and engineering applications. Chapters havebeen organized into the two topical areas of Boolean logic andpredicate logic. Techniques situated outside formal logic areapplied to illustrate and demonstrate significant facts regardingthe power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems ofPost and Gödel). Logic cannot certify all "conditional" truths, such as thosethat are specific to the Peano arithmetic. Therefore, logic hassome serious limitations, as shown through Gödel'sincompleteness theorem. Numerous examples and problem sets are provided throughout thetext, further facilitating readers' understanding of thecapabilities of logic to discover mathematical truths. In addition,an extensive appendix introduces Tarski semantics and proceeds withdetailed proofs of completeness and first incompleteness theorems,while also providing a self-contained introduction to the theory ofcomputability. With its thorough scope of coverage and accessible style,Mathematical Logic is an ideal book for courses inmathematics, computer science, and philosophy at theupper-undergraduate and graduate levels. It is also a valuablereference for researchers and practitioners who wish to learn howto use logic in their everyday work.
## A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences

This volume presents a short guide to the extensive literature concerning semir ings along with a complete bibliography. The literature has been created over many years, in variety of languages, by authors representing different schools of mathematics and working in various related fields. In many instances the terminology used is not universal, which further compounds the difficulty of locating pertinent sources even in this age of the Internet and electronic dis semination of research results. So far there has been no single reference that could guide the interested scholar or student to the relevant publications. This book is an attempt to fill this gap. My interest in the theory of semirings began in the early sixties, when to gether with Bogdan W ~glorz I tried to investigate some algebraic aspects of compactifications of topological spaces, semirings of semicontinuous functions, and the general ideal theory for special semirings. (Unfortunately, local alge braists in Poland told me at that time that there was nothing interesting in investigating semiring theory because ring theory was still being developed). However, some time later we became aware of some similar investigations hav ing already been done. The theory of semirings has remained "my first love" ever since, and I have been interested in the results in this field that have been appearing in literature (even though I have not been active in this area myself).
## Logic for Applications

In writing this book, our goal was to produce a text suitable for a first course in mathematical logic more attuned than the traditional textbooks to the re cent dramatic growth in the applications oflogic to computer science. Thus, our choice oftopics has been heavily influenced by such applications. Of course, we cover the basic traditional topics: syntax, semantics, soundnes5, completeness and compactness as well as a few more advanced results such as the theorems of Skolem-Lowenheim and Herbrand. Much ofour book, however, deals with other less traditional topics. Resolution theorem proving plays a major role in our treatment of logic especially in its application to Logic Programming and PRO LOG. We deal extensively with the mathematical foundations ofall three ofthese subjects. In addition, we include two chapters on nonclassical logics - modal and intuitionistic - that are becoming increasingly important in computer sci ence. We develop the basic material on the syntax and semantics (via Kripke frames) for each of these logics. In both cases, our approach to formal proofs, soundness and completeness uses modifications of the same tableau method in troduced for classical logic. We indicate how it can easily be adapted to various other special types of modal logics. A number of more advanced topics (includ ing nonmonotonic logic) are also briefly introduced both in the nonclassical logic chapters and in the material on Logic Programming and PROLOG.
## Handbook of Logic and Proof Techniques for Computer Science

Logic plays a central conceptual role in modern mathematics. However, mathematical logic has grown into one of the most recondite areas of mathematics. As a result, most of modern logic is inaccessible to all but the specialist. This new book is a resource that provides a quick introduction and review of the key topics in logic for the computer scientist, engineer, or mathematician.Handbook of Logic and Proof Techniques for Computer Science presents the elements of modern logic, including many current topics, to the reader having only basic mathematical literacy. Computer scientists will find specific examples and important ideas such as axiomatics, recursion theory, decidability, independence, completeness, consistency, model theory, and P/NP completeness. The book contains definitions, examples and discussion of all of the key ideas in basic logic, but also makes a special effort to cut through the mathematical formalism, difficult notation, and esoteric terminology that is typical of modern mathematical logic. TThis handbook delivers cogent and self-contained introductions to critical advanced topics, including:* Godel`s completeness and incompleteness theorems* Methods of proof, cardinal and ordinal numbers, the continuum hypothesis, the axiom of choice, model theory, and number systems and their construction* Extensive treatment of complexity theory and programming applications* Applications to algorithms in Boolean algebra* Discussion of set theory and applications of logicThe book is an excellent resource for the working mathematical scientist. The graduate student or professional in computer science and engineering or the systems scientist who needs to have a quick sketch of a key idea from logic will find it here in this self-contained, accessible, and easy-to-use reference.
## Non-Classical Logics and their Applications to Fuzzy Subsets

Non-Classical Logics and their Applications to Fuzzy Subsets is the first major work devoted to a careful study of various relations between non-classical logics and fuzzy sets. This volume is indispensable for all those who are interested in a deeper understanding of the mathematical foundations of fuzzy set theory, particularly in intuitionistic logic, Lukasiewicz logic, monoidal logic, fuzzy logic and topos-like categories. The tutorial nature of the longer chapters, the comprehensive bibliography and index make it suitable as a valuable and important reference for graduate students as well as research workers in the field of non-classical logics. The book is arranged in three parts: Part A presents the most recent developments in the theory of Heyting algebras, MV-algebras, quantales and GL-monoids. Part B gives a coherent and current account of topos-like categories for fuzzy set theory based on Heyting algebra valued sets, quantal sets of M-valued sets. Part C addresses general aspects of non-classical logics including epistemological problems as well as recursive properties of fuzzy logic.
## A Guide to Classical and Modern Model Theory

This volume is easily accessible to young people and mathematicians unfamiliar with logic. It gives a terse historical picture of Model Theory and introduces the latest developments in the area. It further provides 'hands-on' proofs of elimination of quantifiers, elimination of imaginaries and other relevant matters. The book is for trainees and professional model theorists, and mathematicians working in Algebra and Geometry.
## Principia Mathematica.

## Foundations of Logic and Mathematics

This modern introduction to the foundations of logic and mathematics not only takes theory into account, but also treats in some detail applications that have a substantial impact on everyday life (loans and mortgages, bar codes, public-key cryptography). A first college-level introduction to logic, proofs, sets, number theory, and graph theory, and an excellent self-study reference and resource for instructors.
## Computational Logic in Multi-Agent Systems

Multi-Agent Systems are communities of problem-solving entities that can exhibit varying degrees of intelligence. They can perceive and react to their environment, they can have individual or joint goals, for which they can plan and execute actions. Work on such systems integrates many technologies and concepts in artificial intelligence and other areas of computing as well as other disciplines. The agent paradigm has become very popular and widely used in recent years, due to its applicability to a large range of domains, from search engines to educational aids, to electronic commerce and trade, e-procurement, recommendation systems, and ambient intelligence, to cite only some. Computational logic provides a well-defined, general, and rigorous framework for studying syntax, semantics and procedures for various capabilities and functionalities of individual agents, as well as interaction amongst agents in multi-agent systems. It also provides a well-defined and rigorous framework for implementations, envir- ments, tools, and standards, and for linking together specification and verification of properties of individual agents and multi-agent systems.
## Freedom and Enforcement in Action

Action theory is the object of growing attention in a variety of scientific disciplines and this is the first volume to offer a synthetic view of the range of approaches possible in the topic. The volume focuses on the nexus of formal action theory with a startlingly diverse set of subjects, which range from logic, linguistics, artificial intelligence and automata theory to jurisprudence, deontology and economics. It covers semantic, mathematical and logical aspects of action, showing how the problem of action breaks the boundaries of traditional branches of logic located in syntactics and semantics and now lies on lies on the borderline between logical pragmatics and praxeology. The chapters here focus on specialized tasks in formal action theory, beginning with a thorough description and formalization of the language of action and moving through material on the differing models of action theory to focus on probabilistic models, the relations of formal action theory to deontic logic and its key applications in algorithmic and programming theory. The coverage thus fills a notable lacuna in the literary corpus and offers solid formal underpinning in cognitive science by approaching the problem of cognition as a composite action of mind.
## Grundlagen der Mathematik I

Die Leitgedanken meiner Untersuchungen über die Grundlagen der Mathematik, die ich - anknüpfend an frühere Ansätze - seit 1917 in Besprechungen mit P. BERNAYS wieder aufgenommen habe, sind von mir an verschiedenen Stellen eingehend dargelegt worden. Diesen Untersuchungen, an denen auch W. ACKERMANN beteiligt ist, haben sich seither noch verschiedene Mathematiker angeschlossen. Der hier in seinem ersten Teil vorliegende, von BERNAYS abgefaßte und noch fortzusetzende Lehrgang bezweckt eine Darstellung der Theorie nach ihren heutigen Ergebnissen. Dieser Ergebnisstand weist zugleich die Richtung für die weitere Forschung in der Beweistheorie auf das Endziel hin, unsere üblichen Methoden der Mathematik samt und sonders als widerspruchsfrei zu erkennen. Im Hinblick auf dieses Ziel möchte ich hervorheben, daß die zeit weilig aufgekommene Meinung, aus gewissen neueren Ergebnissen von GÖDEL folge die Undurchführbarkeit meiner Beweistheorie, als irrtüm lich erwiesen ist. Jenes Ergebnis zeigt in der Tat auch nur, daß man für die weitergehenden Widerspruchsfreiheitsbeweise den finiten Stand punkt in einer schärferen Weise ausnutzen muß, als dieses bei der Be trachtung der elementaren Formallsmen erforderlich ist. Göttingen, im März 1934 HILBERT Vorwort zur ersten Auflage Eine Darstellung der Beweistheorie, welche aus dem HILBERTschen Ansatz zur Behandlung der mathematisch-logischen Grundlagenpro bleme erwachsen ist, wurde schon seit längerem von HILBERT ange kündigt.
## Proof Theory for Fuzzy Logics

Fuzzy logics are many-valued logics that are well suited to reasoning in the context of vagueness. They provide the basis for the wider field of Fuzzy Logic, encompassing diverse areas such as fuzzy control, fuzzy databases, and fuzzy mathematics. This book provides an accessible and up-to-date introduction to this fast-growing and increasingly popular area. It focuses in particular on the development and applications of "proof-theoretic" presentations of fuzzy logics; the result of more than ten years of intensive work by researchers in the area, including the authors. In addition to providing alternative elegant presentations of fuzzy logics, proof-theoretic methods are useful for addressing theoretical problems (including key standard completeness results) and developing efficient deduction and decision algorithms. Proof-theoretic presentations also place fuzzy logics in the broader landscape of non-classical logics, revealing deep relations with other logics studied in Computer Science, Mathematics, and Philosophy. The book builds methodically from the semantic origins of fuzzy logics to proof-theoretic presentations such as Hilbert and Gentzen systems, introducing both theoretical and practical applications of these presentations.
## Handbook of Philosophical Logic

It is with great pleasure that we are presenting to the community the second edition of this extraordinary handbook. It has been over 15 years since the publication of the first edition and there have been great changes in the landscape of philosophical logic since then. The first edition has proved invaluable to generations of students and researchers in formal philosophy and language, as well as to consumers of logic in many applied areas. The main logic artiele in the Encyelopaedia Britannica 1999 has described the first edition as 'the best starting point for exploring any of the topics in logic'. We are confident that the second edition will prove to be just as good. ! The first edition was the second handbook published for the logic commu nity. It followed the North Holland one volume Handbook 0/ Mathematical Logic, published in 1977, edited by the late Jon Barwise. The four volume Handbook 0/ Philosophical Logic, published 1983-1989 came at a fortunate temporal junction at the evolution of logic. This was the time when logic was gaining ground in computer science and artificial intelligence cireles. These areas were under increasing commercial press ure to provide devices which help and/or replace the human in his daily activity. This pressure required the use of logic in the modelling of human activity and organisa tion on the one hand and to provide the theoretical basis for the computer program constructs on the other.
## Einführung in die Modelltheorie

## One Hundred Years of Russell ́s Paradox

Die in diesem Band zusammengefassten Beiträge stellen die wesentlichen Forschungsergebnisse der internationalen Münchner Konferenz "100 Jahre Russell-Paradoxon" im Jahr 2001 dar, auf der an die Entdeckung des berühmten Russell Paradoxons vor 100 Jahren erinnert wurde. Die 31 Beiträge und der Einführungsessay des Herausgebers wurden alle - bis auf zwei Ausnahmen - ursprünglich für diesen Band verfasst.
## Generalized Galois logics

Nonclassical logics have played an increasing role in recent years in disciplines ranging from mathematics and computer science to linguistics and philosophy. Generalized Galois Logics develops a uniform framework of relational semantics to mediate between logical calculi and their semantics through algebra. This volume addresses normal modal logics such as K and S5, and substructural logics, including relevance logics, linear logic, and Lambek calculi. The authors also treat less-familiar and new logical systems with equal deftness.
## Modal Logic

This is an advanced 2001 textbook on modal logic, a field which caught the attention of computer scientists in the late 1970s. Researchers in areas ranging from economics to computational linguistics have since realised its worth. The book is for novices and for more experienced readers, with two distinct tracks clearly signposted at the start of each chapter. The development is mathematical; prior acquaintance with first-order logic and its semantics is assumed, and familiarity with the basic mathematical notions of set theory is required. The authors focus on the use of modal languages as tools to analyze the properties of relational structures, including their algorithmic and algebraic aspects, and applications to issues in logic and computer science such as completeness, computability and complexity are considered. Three appendices supply basic background information and numerous exercises are provided. Ideal for anyone wanting to learn modern modal logic.
## Handbook of Automated Reasoning

This second volume of Handbook of Automated Reasoning covers topics such as higher-order logic and logical frameworks, higher-order unification and matching, logical frameworks, proof-assistants using dependent type systems, and nonclassical logics.
## An Introduction to Mathematical Analysis for Economic Theory and Econometrics

Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory

Just another PDF Download site

Mathematics

Mathematics

Mathematics

Computers

Computers

Mathematics

Philosophy

Logic, Symbolic and mathematical

Mathematics

Mathematics

Philosophy

Mathematics

Mathematics

Philosophy

Model theory

Mathematics

Language Arts & Disciplines

Computers

Computers

Business & Economics