Mathematics

The Mathematics of Logic

A Guide to Completeness Theorems and their Applications

Author: Richard W. Kaye

Publisher: Cambridge University Press

ISBN: 1139467212

Category: Mathematics

Page: N.A

View: 2025

This undergraduate textbook covers the key material for a typical first course in logic, in particular presenting a full mathematical account of the most important result in logic, the Completeness Theorem for first-order logic. Looking at a series of interesting systems, increasing in complexity, then proving and discussing the Completeness Theorem for each, the author ensures that the number of new concepts to be absorbed at each stage is manageable, whilst providing lively mathematical applications throughout. Unfamiliar terminology is kept to a minimum, no background in formal set-theory is required, and the book contains proofs of all the required set theoretical results. The reader is taken on a journey starting with König's Lemma, and progressing via order relations, Zorn's Lemma, Boolean algebras, and propositional logic, to completeness and compactness of first-order logic. As applications of the work on first-order logic, two final chapters provide introductions to model theory and nonstandard analysis.
Mathematics

Mathematical Logic

Author: George Tourlakis

Publisher: John Wiley & Sons

ISBN: 1118030699

Category: Mathematics

Page: 294

View: 895

A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established "Hilbert" style of proof writing, as well as the "equational" style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Gödel). Logic cannot certify all "conditional" truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Gödel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to the theory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work.
Mathematics

Propositional and Predicate Calculus: A Model of Argument

Author: Derek Goldrei

Publisher: Springer Science & Business Media

ISBN: 9781846282294

Category: Mathematics

Page: 315

View: 1855

Designed specifically for guided independent study. Features a wealth of worked examples and exercises, many with full teaching solutions, that encourage active participation in the development of the material. It focuses on core material and provides a solid foundation for further study.
Mathematics

Introduction to Mathematical Logic, Fourth Edition

Author: Elliott Mendelson

Publisher: CRC Press

ISBN: 9780412808302

Category: Mathematics

Page: 440

View: 7540

The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.
Mathematics

Mathematical Logic

Author: Stephen Cole Kleene

Publisher: Courier Corporation

ISBN: 0486317072

Category: Mathematics

Page: 416

View: 3673

Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.
Computers

Handbook of Logic and Proof Techniques for Computer Science

Author: Steven G. Krantz

Publisher: Springer Science & Business Media

ISBN: 9780817642204

Category: Computers

Page: 245

View: 3546

Logic plays a central conceptual role in modern mathematics. However, mathematical logic has grown into one of the most recondite areas of mathematics. As a result, most of modern logic is inaccessible to all but the specialist. This new book is a resource that provides a quick introduction and review of the key topics in logic for the computer scientist, engineer, or mathematician.Handbook of Logic and Proof Techniques for Computer Science presents the elements of modern logic, including many current topics, to the reader having only basic mathematical literacy. Computer scientists will find specific examples and important ideas such as axiomatics, recursion theory, decidability, independence, completeness, consistency, model theory, and P/NP completeness. The book contains definitions, examples and discussion of all of the key ideas in basic logic, but also makes a special effort to cut through the mathematical formalism, difficult notation, and esoteric terminology that is typical of modern mathematical logic. TThis handbook delivers cogent and self-contained introductions to critical advanced topics, including:* Godel`s completeness and incompleteness theorems* Methods of proof, cardinal and ordinal numbers, the continuum hypothesis, the axiom of choice, model theory, and number systems and their construction* Extensive treatment of complexity theory and programming applications* Applications to algorithms in Boolean algebra* Discussion of set theory and applications of logicThe book is an excellent resource for the working mathematical scientist. The graduate student or professional in computer science and engineering or the systems scientist who needs to have a quick sketch of a key idea from logic will find it here in this self-contained, accessible, and easy-to-use reference.
Mathematics

Three Views of Logic

Mathematics, Philosophy, and Computer Science

Author: Donald W. Loveland,Richard E. Hodel,S. G. Sterrett

Publisher: Princeton University Press

ISBN: 140084875X

Category: Mathematics

Page: 344

View: 2935

Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-order logic using a computer-oriented (resolution) formal system. Linear resolution and its connection to the programming language Prolog are also treated. The computability component offers a machine model and mathematical model for computation, proves the equivalence of the two approaches, and includes famous decision problems unsolvable by an algorithm. The section on nonclassical logic discusses the shortcomings of classical logic in its treatment of implication and an alternate approach that improves upon it: Anderson and Belnap's relevance logic. Applications are included in each section. The material on a four-valued semantics for relevance logic is presented in textbook form for the first time. Aimed at upper-level undergraduates of moderate analytical background, Three Views of Logic will be useful in a variety of classroom settings. Gives an exceptionally broad view of logic Treats traditional logic in a modern format Presents relevance logic with applications Provides an ideal text for a variety of one-semester upper-level undergraduate courses
Computers

Proofs and Algorithms

An Introduction to Logic and Computability

Author: Gilles Dowek

Publisher: Springer Science & Business Media

ISBN: 9780857291219

Category: Computers

Page: 156

View: 9159

Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.
Mathematics

First-order Logic

Author: Raymond M. Smullyan

Publisher: Courier Corporation

ISBN: 9780486683706

Category: Mathematics

Page: 158

View: 7101

Considered the best book in the field, this completely self-contained study is both an introduction to quantification theory and an exposition of new results and techniques in "analytic" or "cut free" methods. The focus in on the tableau point of view. Topics include trees, tableau method for propositional logic, Gentzen systems, more. Includes 144 illustrations.
Mathematics

Notes on Logic and Set Theory

Author: P. T. Johnstone

Publisher: Cambridge University Press

ISBN: 9780521336925

Category: Mathematics

Page: 110

View: 4409

A succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. Suitable for all introductory mathematics undergraduates, Notes on Logic and Set Theory covers the basic concepts of logic: first-order logic, consistency, and the completeness theorem, before introducing the reader to the fundamentals of axiomatic set theory. Successive chapters examine the recursive functions, the axiom of choice, ordinal and cardinal arithmetic, and the incompleteness theorems. Dr. Johnstone has included numerous exercises designed to illustrate the key elements of the theory and to provide applications of basic logical concepts to other areas of mathematics.
Mathematics

Introduction to Model Theory

Author: Philipp Rothmaler

Publisher: CRC Press

ISBN: 9789056992873

Category: Mathematics

Page: 324

View: 9421

Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.
Mathematics

Gödel's Theorem

An Incomplete Guide to Its Use and Abuse

Author: Torkel Franzén

Publisher: A K Peters/CRC Press

ISBN: 9781568812380

Category: Mathematics

Page: 182

View: 8333

"Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel
Mathematics

A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences

With Complete Bibliography

Author: K. Glazek

Publisher: Springer Science & Business Media

ISBN: 9401599645

Category: Mathematics

Page: 392

View: 700

This volume presents a short guide to the extensive literature concerning semir ings along with a complete bibliography. The literature has been created over many years, in variety of languages, by authors representing different schools of mathematics and working in various related fields. In many instances the terminology used is not universal, which further compounds the difficulty of locating pertinent sources even in this age of the Internet and electronic dis semination of research results. So far there has been no single reference that could guide the interested scholar or student to the relevant publications. This book is an attempt to fill this gap. My interest in the theory of semirings began in the early sixties, when to gether with Bogdan W ~glorz I tried to investigate some algebraic aspects of compactifications of topological spaces, semirings of semicontinuous functions, and the general ideal theory for special semirings. (Unfortunately, local alge braists in Poland told me at that time that there was nothing interesting in investigating semiring theory because ring theory was still being developed). However, some time later we became aware of some similar investigations hav ing already been done. The theory of semirings has remained "my first love" ever since, and I have been interested in the results in this field that have been appearing in literature (even though I have not been active in this area myself).
Mathematics

The Foundations of Mathematics

Author: Kenneth Kunen

Publisher: N.A

ISBN: 9781904987147

Category: Mathematics

Page: 251

View: 1749

Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.
Logic, Symbolic and mathematical

Principia Mathematica

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: N.A

View: 8842

A Friendly Introduction to Mathematical Logic

Author: Christopher C. Leary,Lars Kristiansen

Publisher: Lulu.com

ISBN: 1942341075

Category:

Page: 380

View: 1964

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Godel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises."
Computers

Godel's Incompleteness Theorems

Author: Raymond M. Smullyan

Publisher: Oxford University Press

ISBN: 0195364376

Category: Computers

Page: 160

View: 1183

Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
Mathematics

Fundamentals of Mathematical Logic

Author: Peter G. Hinman

Publisher: CRC Press

ISBN: 1439864276

Category: Mathematics

Page: 896

View: 8048

This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.
Mathematics

Model-Theoretic Logics

Author: J. Barwise,S. Feferman

Publisher: Cambridge University Press

ISBN: 1316739392

Category: Mathematics

Page: N.A

View: 6931

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the eighth publication in the Perspectives in Logic series, brings together several directions of work in model theory between the late 1950s and early 1980s. It contains expository papers by pre-eminent researchers. Part I provides an introduction to the subject as a whole, as well as to the basic theory and examples. The rest of the book addresses finitary languages with additional quantifiers, infinitary languages, second-order logic, logics of topology and analysis, and advanced topics in abstract model theory. Many chapters can be read independently.
Mathematics

First Order Mathematical Logic

Author: Angelo Margaris

Publisher: Courier Corporation

ISBN: 9780486662695

Category: Mathematics

Page: 211

View: 8775

"Attractive and well-written introduction." — Journal of Symbolic Logic The logic that mathematicians use to prove their theorems is itself a part of mathematics, in the same way that algebra, analysis, and geometry are parts of mathematics. This attractive and well-written introduction to mathematical logic is aimed primarily at undergraduates with some background in college-level mathematics; however, little or no acquaintance with abstract mathematics is needed. Divided into three chapters, the book begins with a brief encounter of naïve set theory and logic for the beginner, and proceeds to set forth in elementary and intuitive form the themes developed formally and in detail later. In Chapter Two, the predicate calculus is developed as a formal axiomatic theory. The statement calculus, presented as a part of the predicate calculus, is treated in detail from the axiom schemes through the deduction theorem to the completeness theorem. Then the full predicate calculus is taken up again, and a smooth-running technique for proving theorem schemes is developed and exploited. Chapter Three is devoted to first-order theories, i.e., mathematical theories for which the predicate calculus serves as a base. Axioms and short developments are given for number theory and a few algebraic theories. Then the metamathematical notions of consistency, completeness, independence, categoricity, and decidability are discussed, The predicate calculus is proved to be complete. The book concludes with an outline of Godel's incompleteness theorem. Ideal for a one-semester course, this concise text offers more detail and mathematically relevant examples than those available in elementary books on logic. Carefully chosen exercises, with selected answers, help students test their grasp of the material. For any student of mathematics, logic, or the interrelationship of the two, this book represents a thought-provoking introduction to the logical underpinnings of mathematical theory. "An excellent text." — Mathematical Reviews