**Author**: Guo Wenbin

**Publisher:** Springer Science & Business Media

**ISBN:** 9401140545

**Category:** Mathematics

**Page:** 258

**View:** 7943

Skip to content
# Free eBooks PDF

## The Theory of Classes of Groups

One of the characteristics of modern algebra is the development of new tools and concepts for exploring classes of algebraic systems, whereas the research on individual algebraic systems (e. g. , groups, rings, Lie algebras, etc. ) continues along traditional lines. The early work on classes of alge bras was concerned with showing that one class X of algebraic systems is actually contained in another class F. Modern research into the theory of classes was initiated in the 1930's by Birkhoff's work [1] on general varieties of algebras, and Neumann's work [1] on varieties of groups. A. I. Mal'cev made fundamental contributions to this modern development. ln his re ports [1, 3] of 1963 and 1966 to The Fourth All-Union Mathematics Con ference and to another international mathematics congress, striking the ories of classes of algebraic systems were presented. These were later included in his book [5]. International interest in the theory of formations of finite groups was aroused, and rapidly heated up, during this time, thanks to the work of Gaschiitz [8] in 1963, and the work of Carter and Hawkes [1] in 1967. The major topics considered were saturated formations, Fitting classes, and Schunck classes. A class of groups is called a formation if it is closed with respect to homomorphic images and subdirect products. A formation is called saturated provided that G E F whenever Gjip(G) E F.
## Classes of Finite Groups

This book covers the latest achievements of the Theory of Classes of Finite Groups. It introduces some unpublished and fundamental advances in this Theory and provides a new insight into some classic facts in this area. By gathering the research of many authors scattered in hundreds of papers the book contributes to the understanding of the structure of finite groups by adapting and extending the successful techniques of the Theory of Finite Soluble Groups.
## Arboreal Group Theory

Millions of Americans worked hard to elect Barack Obama. Now they're asking themselves, What's next? How do we keep the momentum going? 50 Simple Ways You Can Help Obama Change America describes actions citizens can take to clean up the mess, enact Obama's core campaign promises, and move the country forward.
## Near-rings: The Theory and its Applications

Near-rings: The Theory and its Applications
## A Course in the Theory of Groups

"An excellent up-to-date introduction to the theory of groups. It is general yet comprehensive, covering various branches of group theory. The 15 chapters contain the following main topics: free groups and presentations, free products, decompositions, Abelian groups, finite permutation groups, representations of groups, finite and infinite soluble groups, group extensions, generalizations of nilpotent and soluble groups, finiteness properties." —-ACTA SCIENTIARUM MATHEMATICARUM
## Model Theory of Groups and Automorphism Groups

Surveys recent interactions between model theory and other branches of mathematics, notably group theory.
## Group Theory in China

Hsio-Fu Tuan is a Chinese mathematician who has made important contributions to the theories of both finite groups and Lie groups. He has also had a great influence on the development of algebra, and particularly group theory in China. The present volume consists of a collection of essays on various aspects of group theory written by some of his former students and colleagues in honour of his 80th birthday. The papers contain the main general results, as well as recent ones, on certain topics within this discipline. The chief editor, Zhe-Xian Wan, is a leading algebraist in China.
## Semigroups and Their Applications

Proceedings of the International Conference held at the California State University, Chico, April 10-12, 1986
## Formal Groups and Applications

This title provides a comprehensive treatment of the theory of formal groups and its numerous applications in several areas of mathematics. The seven chapters of the book present basics and main results of the theory, as well as very important applications in algebraic topology, number theory, and algebraic geometry.
## The Theory and Applications of Harmonic Integrals

First published in 1941, this book, by one of the foremost geometers of his day, rapidly became a classic. In its original form the book constituted a section of Hodge's essay for which the Adam's prize of 1936 was awarded, but the author substantially revised and rewrote it. The book begins with an exposition of the geometry of manifolds and the properties of integrals on manifolds. The remainder of the book is then concerned with the application of the theory of harmonic integrals to other branches of mathematics, particularly to algebraic varieties and to continuous groups. Differential geometers and workers in allied subjects will welcome this reissue both for its lucid account of the subject and for its historical value. For this paperback edition, Professor Sir Michael Atiyah has written a foreword that sets Hodges work in its historical context and relates it briefly to developments.
## Groups and Characters

Group representation theory is both elegant and practical, with important applications to quantum mechanics, spectroscopy, crystallography, and other fields in the physical sciences. Until now, however, there have been virtually no accessible treatments of group theory that include representations and characters. The classic works in the field require a high level of mathematical sophistication, and other texts omit representations and characters. Groups and Characters offers an easy-to-follow introduction to the theory of groups and of group characters. Designed as a rapid survey of the subject, this unique text emphasizes examples and applications of the theorems, and avoids many of the longer and more difficult proofs. The author presents group theory through the Sylow Theorems and includes the full subgroup structure of A5. Representations and characters are worked out with numerous character tables, along with real and induced characters that lead to the table for S5. The text includes specific sections that provide the mathematical basis for some of the important applications of group theory in spectroscopy and molecular structure. It also offers numerous exercises-some stressing computation of concrete examples, others stressing development of the mathematical theory. Groups and Characters provides the ideal grounding for more advanced studies with the classic texts, and for more broad-based work in abstract algebra. Furthermore, physical scientists-whose experience with groups and characters may not be rigorous-will find Groups and Characters the ideal means for gaining a sense of the mathematics lying behind the techniques used in applications.
## Applied Finite Group Actions

Written by one of the top experts in the fields of combinatorics and representation theory, this book distinguishes itself from the existing literature by its applications-oriented point of view. The second edition is extended, placing more emphasis on applications to the constructive theory of finite structures. Recent progress in this field, in particular in design and coding theory, is described.
## Applications of the Theory of Groups in Mechanics and Physics

The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non contradictory formulations for the investigated phenomena.
## The Theory of Groups and Quantum Mechanics

This landmark among mathematics texts applies group theory to quantum mechanics, first covering unitary geometry, quantum theory, groups and their representations, then applications themselves — rotation, Lorentz, permutation groups, symmetric permutation groups, and the algebra of symmetric transformations.
## Identities of Algebras and Their Representations

During the past forty years, a new trend in the theory of associative algebras, Lie algebras, and their representations has formed under the influence of mathematical logic and universal algebra, namely, the theory of varieties and identities of associative algebras, Lie algebras, and their representations. The last twenty years have seen the creation of the method of 2-words and $\alpha$-functions, which allowed a number of problems in the theory of groups, rings, Lie algebras, and their representations to be solved in a unified way. The possibilities of this method are far from exhausted. This book sums up the applications of the method of 2-words and $\alpha$-functions in the theory of varieties and gives a systematic exposition of contemporary achievements in the theory of identities of algebras and their representations closely related to this method. The aim is to make these topics accessible to a wider group of mathematicians.
## Mathematics Galore!

This book is a series of self-contained workshops in mathematics which aim to enthuse and inspire young people, their parents and teachers with the joy and excitement of modern mathematics. Written in an informal style, each chapter describes how novel mathematical ideas relate directly to real life. The chapters contain both a description of the mathematics and its applications together with problem sheets, their solutions and ideas for further work, project and field trips. Topics include; mazes, folk dancing, sundials, magic, castles, codes, number systems, and slide rules. This book should be accessible to young people from age thirteen upwards and yet contains material which should stretch the brightest students.
## Encyclopaedia of Mathematics

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
## Topology and Its Applications

This book contains the proceedings of an international topology conference held in the town of Zagulba, near Baku in the former Soviet Union, in October 1987. Sponsored by the Institute of Mathematics and Mechanics of Azerbaijan and the Steklov Mathematical Institute, the conference was organized by F. G. Maksudov and S. P. Novikov. About 400 mathematicians, including about 100 foreigners, attended the conference. The book covers aspects of general, algebraic, and low-dimensional topology.
## Algebraic and Geometric Surgery

'An excellent framework for various courses in Surgery Theory... very readable... I read this fine and carefully written book with great pleasure, and highly recommend it for everyone who wants to undertake a deeper study of Surgery Theory and its Applications.' -Alberto Cavicchioli (Modena), Zentralblatt MATHThis book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, cobordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
## Recent Developments in Lie Algebras, Groups, and Representation Theory

This book contains the proceedings of the 2009-2011 Southeastern Lie Theory Workshop Series, held October 9-11, 2009 at North Carolina State University, May 22-24, 2010, at the University of Georgia, and June 1-4, 2011 at the University of Virginia. Some of the articles, written by experts in the field, survey recent developments while others include new results in Lie algebras, quantum groups, finite groups, and algebraic groups.

Just another PDF Download site

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Computers

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Juvenile Nonfiction

Mathematics

Mathematics

Mathematics

Mathematics

*2009-2011 Southeastern Lie Theory Workshop Series : Combinatorial Lie Theory and Applications, October 9-11, 2009, North Carolina State University : Homological Methods in Representation Theory, May 22-24, 2010, University of Georgia : Finite and Algebraic Groups, June 1-4, 2011, University of Virginia*

**Author**: Kailash C. Misra,Daniel Ken Nakano,Brian Parshall

**Publisher:** American Mathematical Soc.

**ISBN:** 0821869175

**Category:** Mathematics

**Page:** 310

**View:** 2037