Author: Alexander Kharazishvili

Publisher: Springer Science & Business Media

ISBN: 9491216368

Category: Mathematics

Page: 461

View: 3611

This book highlights various topics on measure theory and vividly demonstrates that the different questions of this theory are closely connected with the central measure extension problem. Several important aspects of the measure extension problem are considered separately: set-theoretical, topological and algebraic. Also, various combinations (e.g., algebraic-topological) of these aspects are discussed by stressing their specific features. Several new methods are presented for solving the above mentioned problem in concrete situations. In particular, the following new results are obtained: the measure extension problem is completely solved for invariant or quasi-invariant measures on solvable uncountable groups; non-separable extensions of invariant measures are constructed by using their ergodic components; absolutely non-measurable additive functionals are constructed for certain classes of measures; the structure of algebraic sums of measure zero sets is investigated. The material presented in this book is essentially self-contained and is oriented towards a wide audience of mathematicians (including postgraduate students). New results and facts given in the book are based on (or closely connected with) traditional topics of set theory, measure theory and general topology such as: infinite combinatorics, Martin's Axiom and the Continuum Hypothesis, Luzin and Sierpinski sets, universal measure zero sets, theorems on the existence of measurable selectors, regularity properties of Borel measures on metric spaces, and so on. Essential information on these topics is also included in the text (primarily, in the form of Appendixes or Exercises), which enables potential readers to understand the proofs and follow the constructions in full details. This not only allows the book to be used as a monograph but also as a course of lectures for students whose interests lie in set theory, real analysis, measure theory and general topology.

Analytic Inequalities

Recent Advances

Author: B.G. Pachpatte

Publisher: Springer Science & Business Media

ISBN: 9491216449

Category: Mathematics

Page: 306

View: 9061

For more than a century, the study of various types of inequalities has been the focus of great attention by many researchers, interested both in the theory and its applications. In particular, there exists a very rich literature related to the well known Cebysev, Gruss, Trapezoid, Ostrowski, Hadamard and Jensen type inequalities. The present monograph is an attempt to organize recent progress related to the above inequalities, which we hope will widen the scope of their applications. The field to be covered is extremely wide and it is impossible to treat all of these here. The material included in the monograph is recent and hard to find in other books. It is accessible to any reader with a reasonable background in real analysis and an acquaintance with its related areas. All results are presented in an elementary way and the book could also serve as a textbook for an advanced graduate course. The book deserves a warm welcome to those who wish to learn the subject and it will also be most valuable as a source of reference in the field. It will be invaluable reading for mathematicians and engineers and also for graduate students, scientists and scholars wishing to keep abreast of this important area of research.

Single Variable Differential and Integral Calculus

Mathematical Analysis

Author: Elimhan Mahmudov

Publisher: Springer Science & Business Media

ISBN: 9491216864

Category: Mathematics

Page: 373

View: 5512

The book “Single variable Differential and Integral Calculus” is an interesting text book for students of mathematics and physics programs, and a reference book for graduate students in any engineering field. This book is unique in the field of mathematical analysis in content and in style. It aims to define, compare and discuss topics in single variable differential and integral calculus, as well as giving application examples in important business fields. Some elementary concepts such as the power of a set, cardinality, measure theory, measurable functions are introduced. It also covers real and complex numbers, vector spaces, topological properties of sets, series and sequences of functions (including complex-valued functions and functions of a complex variable), polynomials and interpolation and extrema of functions. Although analysis is based on the single variable models and applications, theorems and examples are all set to be converted to multi variable extensions. For example, Newton, Riemann, Stieltjes and Lebesque integrals are studied together and compared.

Strange Functions in Real Analysis, Second Edition

Author: Alexander Kharazishvili

Publisher: CRC Press

ISBN: 9781420034844

Category: Mathematics

Page: 432

View: 7166

Weierstrass and Blancmange nowhere differentiable functions, Lebesgue integrable functions with everywhere divergent Fourier series, and various nonintegrable Lebesgue measurable functions. While dubbed strange or "pathological," these functions are ubiquitous throughout mathematics and play an important role in analysis, not only as counterexamples of seemingly true and natural statements, but also to stimulate and inspire the further development of real analysis. Strange Functions in Real Analysis explores a number of important examples and constructions of pathological functions. After introducing the basic concepts, the author begins with Cantor and Peano-type functions, then moves to functions whose constructions require essentially noneffective methods. These include functions without the Baire property, functions associated with a Hamel basis of the real line, and Sierpinski-Zygmund functions that are discontinuous on each subset of the real line having the cardinality continuum. Finally, he considers examples of functions whose existence cannot be established without the help of additional set-theoretical axioms and demonstrates that their existence follows from certain set-theoretical hypotheses, such as the Continuum Hypothesis.
Business & Economics

Mathematical Methods and Models for Economists

Author: Angel de la Fuente

Publisher: Cambridge University Press

ISBN: 9780521585293

Category: Business & Economics

Page: 835

View: 8825

A textbook for a first-year PhD course in mathematics for economists and a reference for graduate students in economics.

Topological Groups and Related Structures, An Introduction to Topological Algebra.

Author: Alexander Arhangel’skii,Mikhail Tkachenko

Publisher: Springer Science & Business Media

ISBN: 949121635X

Category: Mathematics

Page: 781

View: 3931

Algebraandtopology,thetwofundamentaldomainsofmathematics,playcomplem- tary roles. Topology studies continuity and convergence and provides a general framework to study the concept of a limit. Much of topology is devoted to handling in?nite sets and in?nity itself; the methods developed are qualitative and, in a certain sense, irrational. - gebra studies all kinds of operations and provides a basis for algorithms and calculations. Very often, the methods here are ?nitistic in nature. Because of this difference in nature, algebra and topology have a strong tendency to develop independently, not in direct contact with each other. However, in applications, in higher level domains of mathematics, such as functional analysis, dynamical systems, representation theory, and others, topology and algebra come in contact most naturally. Many of the most important objects of mathematics represent a blend of algebraic and of topologicalstructures. Topologicalfunctionspacesandlineartopologicalspacesingeneral, topological groups and topological ?elds, transformation groups, topological lattices are objects of this kind. Very often an algebraic structure and a topology come naturally together; this is the case when they are both determined by the nature of the elements of the set considered (a group of transformations is a typical example). The rules that describe the relationship between a topology and an algebraic operation are almost always transparentandnatural—theoperationhastobecontinuous,jointlyorseparately.

Think Stats

Author: Allen B. Downey

Publisher: "O'Reilly Media, Inc."

ISBN: 1491907371

Category: Computers

Page: 226

View: 9995

If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data


Second Edition

Author: Plato

Publisher: Hackett Publishing

ISBN: 1585108138

Category: Philosophy

Page: 192

View: 8970

Both an ideal entrée for beginning readers and a solid text for scholars, the second edition of Peter Kalkavage's acclaimed translation of Plato's Timaeus brings enhanced accessibility to a rendering well known for its faithfulness to the original text. An extensive essay offers insights into the reading of the work, the nature of Platonic dialogue, and the cultural background of the Timaeus. Appendices on music, astronomy, and geometry provide additional guidance. A brief outline of the themes of the work, a detailed glossary, and a selected bibliography are also included.

Learning in Virtual Worlds

Research and Applications

Author: Sue Gregory,Mark J.W. Lee,Barney Dalgarno,Belinda Tynan

Publisher: Athabasca University Press

ISBN: 177199133X

Category: Education

Page: 347

View: 2405

Three-dimensional (3D) immersive virtual worlds have been touted as being capable of facilitating highly interactive, engaging, multimodal learning experiences. Much of the evidence gathered to support these claims has been anecdotal but the potential that these environments hold to solve traditional problems in online and technology-mediated education—primarily learner isolation and student disengagement—has resulted in considerable investments in virtual world platforms like Second Life, OpenSimulator, and Open Wonderland by both professors and institutions. To justify this ongoing and sustained investment, institutions and proponents of simulated learning environments must assemble a robust body of evidence that illustrates the most effective use of this powerful learning tool. In this authoritative collection, a team of international experts outline the emerging trends and developments in the use of 3D virtual worlds for teaching and learning. They explore aspec ts of learner interaction with virtual worlds, such as user wayfinding in Second Life, communication modes and perceived presence, and accessibility issues for elderly or disabled learners. They also examine advanced technologies that hold potential for the enhancement of learner immersion and discuss best practices in the design and implementation of virtual world-based learning interventions and tasks. By evaluating and documenting different methods, approaches, and strategies, the contributors to Learning in Virtual Worlds offer important information and insight to both scholars and practitioners in the field.

Derivatives of Inner Functions

Author: Javad Mashreghi

Publisher: Springer Science & Business Media

ISBN: 1461456118

Category: Mathematics

Page: 170

View: 3598

​Inner functions form an important subclass of bounded analytic functions. Since they have unimodular boundary values, they appear in many extremal problems of complex analysis. They have been extensively studied since early last century, and the literature on this topic is vast. Therefore, this book is devoted to a concise study of derivatives of these objects, and confined to treating the integral means of derivatives and presenting a comprehensive list of results on Hardy and Bergman means. The goal is to provide rapid access to the frontiers of research in this field. This monograph will allow researchers to get acquainted with essentials on inner functions, and it is self-contained, which makes it accessible to graduate students.

Introduction to Measure Theory and Integration

Author: Luigi Ambrosio,Giuseppe Da Prato,Andrea C.G. Mennucci

Publisher: Springer Science & Business Media

ISBN: 8876423869

Category: Mathematics

Page: 198

View: 5269

This textbook collects the notes for an introductory course in measure theory and integration. The course was taught by the authors to undergraduate students of the Scuola Normale Superiore, in the years 2000-2011. The goal of the course was to present, in a quick but rigorous way, the modern point of view on measure theory and integration, putting Lebesgue's Euclidean space theory into a more general context and presenting the basic applications to Fourier series, calculus and real analysis. The text can also pave the way to more advanced courses in probability, stochastic processes or geometric measure theory. Prerequisites for the book are a basic knowledge of calculus in one and several variables, metric spaces and linear algebra. All results presented here, as well as their proofs, are classical. The authors claim some originality only in the presentation and in the choice of the exercises. Detailed solutions to the exercises are provided in the final part of the book.

Generalized Measure Theory

Author: Zhenyuan Wang,George J. Klir

Publisher: Springer Science & Business Media

ISBN: 0387768521

Category: Mathematics

Page: 384

View: 7200

Generalized Measure Theory examines the relatively new mathematical area of generalized measure theory. The exposition unfolds systematically, beginning with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory.

Sage for Undergraduates

Author: Gregory V. Bard

Publisher: American Mathematical Soc.

ISBN: 1470411113

Category: Mathematics

Page: 3520

View: 4295

As the open-source and free competitor to expensive software like MapleTM, Mathematica®, Magma, and MATLAB®, Sage offers anyone with access to a web browser the ability to use cutting-edge mathematical software and display his or her results for others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students toward the end of Calculus II (single-variable integral calculus) or higher-level course work such as Multivariate Calculus, Differential Equations, Linear Algebra, or Math Modeling. The book assumes no background in computer science, but the reader who finishes the book will have learned about half of a first semester Computer Science I course, including large parts of the Python programming language. The audience of the book is not only math majors, but also physics, engineering, finance, statistics, chemistry, and computer science majors.

Lyapunov Exponents of Linear Cocycles

Continuity via Large Deviations

Author: Pedro Duarte,Silvius Klein

Publisher: Springer

ISBN: 9462391246

Category: Mathematics

Page: 263

View: 4064

The aim of this monograph is to present a general method of proving continuity of Lyapunov exponents of linear cocycles. The method uses an inductive procedure based on a general, geometric version of the Avalanche Principle. The main assumption required by this method is the availability of appropriate large deviation type estimates for quantities related to the iterates of the base and fiber dynamics associated with the linear cocycle. We establish such estimates for various models of random and quasi-periodic cocycles. Our method has its origins in a paper of M. Goldstein and W. Schlag. Our present work expands upon their approach in both depth and breadth. We conclude this monograph with a list of related open problems, some of which may be treated using a similar approach.

Potential Theory on Harmonic Spaces

Author: Corneliu Constantinescu,Aurel Cornea

Publisher: Springer

ISBN: 9783642654343

Category: Mathematics

Page: 360

View: 4598

There has been a considerable revival of interest in potential theory during the last 20 years. This is made evident by the appearance of new mathematical disciplines in that period which now-a-days are considered as parts of potential theory. Examples of such disciplines are: the theory of Choquet capacities, of Dirichlet spaces, of martingales and Markov processes, of integral representation in convex compact sets as well as the theory of harmonic spaces. All these theories have roots in classical potential theory. The theory of harmonic spaces, sometimes also called axiomatic theory of harmonic functions, plays a particular role among the above mentioned theories. On the one hand, this theory has particularly close connections with classical potential theory. Its main notion is that of a harmonic function and its main aim is the generalization and unification of classical results and methods for application to an extended class of elliptic and parabolic second order partial differential equations. On the other hand, the theory of harmonic spaces is closely related to the theory of Markov processes. In fact, all important notions and results of the theory have a probabilistic interpretation.

Stealth Assessment

Measuring and Supporting Learning in Video Games

Author: Valerie Jean Shute,Matthew Ventura

Publisher: MIT Press

ISBN: 0262518813

Category: Education

Page: 91

View: 7952

To succeed in today's interconnected and complex world, workers need to be able to think systemically, creatively, and critically. Equipping K-16 students with these twenty-first-century competencies requires new thinking not only about what should be taught in school but also about how to develop valid assessments to measure and support these competencies. In Stealth Assessment, Valerie Shute and Matthew Ventura investigate an approach that embeds performance-based assessments in digital games. They argue that using well-designed games as vehicles to assess and support learning will help combat students' growing disengagement from school, provide dynamic and ongoing measures of learning processes and outcomes, and offer students opportunities to apply such complex competencies as creativity, problem solving, persistence, and collaboration. Embedding assessments within games provides a way to monitor players' progress toward targeted competencies and to use that information to support learning. Shute and Ventura discuss problems with such traditional assessment methods as multiple-choice questions, review evidence relating to digital games and learning, and illustrate the stealth-assessment approach with a set of assessments they are developing and embedding in the digital game Newton's Playground. These stealth assessments are intended to measure levels of creativity, persistence, and conceptual understanding of Newtonian physics during game play. Finally, they consider future research directions related to stealth assessment in education.

Soft Computing: State of the Art Theory and Novel Applications

Author: Ronald R Yager,Ali M. Abbasov,Marek Reformat,Shahnaz N. Shahbazova

Publisher: Springer

ISBN: 3642349226

Category: Computers

Page: 318

View: 6087

This book is a tribute to Lotfi A. Zadeh, the father of fuzzy logic, on the occasion of his 90th Birthday. The book gathers original scientific contributions written by top scientists and presenting the latest theories, applications and new trends in the fascinating and challenging field of soft computing.

Learning Science Through Computer Games and Simulations

Author: National Research Council,Division of Behavioral and Social Sciences and Education,Board on Science Education,Committee on Science Learning: Computer Games, Simulations, and Education

Publisher: National Academies Press

ISBN: 0309212669

Category: Education

Page: 174

View: 5386

At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential. Many experts have called for a new approach to science education, based on recent and ongoing research on teaching and learning. In this approach, simulations and games could play a significant role by addressing many goals and mechanisms for learning science: the motivation to learn science, conceptual understanding, science process skills, understanding of the nature of science, scientific discourse and argumentation, and identification with science and science learning. To explore this potential, Learning Science: Computer Games, Simulations, and Education, reviews the available research on learning science through interaction with digital simulations and games. It considers the potential of digital games and simulations to contribute to learning science in schools, in informal out-of-school settings, and everyday life. The book also identifies the areas in which more research and research-based development is needed to fully capitalize on this potential. Learning Science will guide academic researchers; developers, publishers, and entrepreneurs from the digital simulation and gaming community; and education practitioners and policy makers toward the formation of research and development partnerships that will facilitate rich intellectual collaboration. Industry, government agencies and foundations will play a significant role through start-up and ongoing support to ensure that digital games and simulations will not only excite and entertain, but also motivate and educate.

Introduction to Topological Groups

Author: Taqdir Husain

Publisher: Courier Dover Publications

ISBN: 0486819191

Category: Mathematics

Page: 240

View: 6035

Concise treatment covers semitopological groups, locally compact groups, Harr measure, and duality theory and some of its applications. The volume concludes with a chapter that introduces Banach algebras. 1966 edition.

Normal and Student ́s t Distributions and Their Applications

Author: Mohammad Ahsanullah,B.M. Golam Kibria,Mohammad Shakil

Publisher: Springer Science & Business Media

ISBN: 9462390614

Category: Mathematics

Page: 157

View: 6918

The most important properties of normal and Student t-distributions are presented. A number of applications of these properties are demonstrated. New related results dealing with the distributions of the sum, product and ratio of the independent normal and Student distributions are presented. The materials will be useful to the advanced undergraduate and graduate students and practitioners in the various fields of science and engineering.