*An Introduction to P-Adic Analysis*

**Author**: W. H. Schikhof

**Publisher:** Cambridge University Press

**ISBN:** 0521032873

**Category:** Mathematics

**Page:** 320

**View:** 6815

Skip to content
# Free eBooks PDF

## Ultrametric Calculus

This is an introduction to p-adic analysis which is elementary yet complete and which displays the variety of applications of the subject. Dr Schikhof is able to point out and explain how p-adic and 'real' analysis differ. This approach guarantees the reader quickly becomes acquainted with this equally 'real' analysis and appreciates its relevance. The reader's understanding is enhanced and deepened by the large number of exercises included throughout; these both test the reader's grasp and extend the text in interesting directions. As a consequence, this book will become a standard reference for professionals (especially in p-adic analysis, number theory and algebraic geometry) and will be welcomed as a textbook for advanced students of mathematics familiar with algebra and analysis.
## Ultrametric Calculus, An Introduction to p-Adic Analysis

Facts101 is your complete guide to Ultrametric Calculus, An Introduction to p-Adic Analysis. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.
## Advances in Ultrametric Analysis

Articles included in this book feature recent developments in various areas of non-Archimedean analysis: summation of -adic series, rational maps on the projective line over , non-Archimedean Hahn-Banach theorems, ultrametric Calkin algebras, -modules with a convex base, non-compact Trace class operators and Schatten-class operators in -adic Hilbert spaces, algebras of strictly differentiable functions, inverse function theorem and mean value theorem in Levi-Civita fields, ultrametric spectra of commutative non-unital Banach rings, classes of non-Archimedean Köthe spaces, -adic Nevanlinna theory and applications, and sub-coordinate representation of -adic functions. Moreover, a paper on the history of -adic analysis with a comparative summary of non-Archimedean fields is presented. Through a combination of new research articles and a survey paper, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
## Advances in Ultrametric Analysis

This volume contains papers based on lectures given at the 12th International Conference on p-adic Functional Analysis, which was held at the University of Manitoba on July 2-6, 2012. The articles included in this book feature recent developments in various areas of non-archimedean analysis: branched values and zeros of the derivative of a $p$-adic meromorphic function, p-adic meromorphic functions $f^{\prime}P^{\prime}(f), g^{\prime}P^{\prime}(g)$ sharing a small function, properties of composition of analytic functions, partial fractional differentiability, morphisms between ultrametric Banach algebras of continuous functions and maximal ideals of finite dimension, the $p$-adic $q$-distributions, Banach spaces over fields with an infinite rank valuation, Grobman-Hartman theorems for diffeomorphisms of Banach spaces over valued fields, integral representations of continuous linear maps on $p$-adic spaces of continuous functions, non-Archimedean operator algebras, generalized Keller spaces over valued fields, proper multiplications on the completion of a totally ordered abelian group, the Grothendieck approximation theory in non-Archimedean functional analysis, generalized power series spaces, measure theory and the study of power series and analytic functions on the Levi-Civita fileds. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
## Advances in Non-Archimedean Analysis

This volume contains papers based on lectures given at the Eleventh International Conference on $p$-adic Functional Analysis, which was held from July 5-9, 2010, in Clermont-Ferrand, France. The articles collected here feature recent developments in various areas of non-Archimedean analysis: Hilbert and Banach spaces, finite dimensional spaces, topological vector spaces and operator theory, strict topologies, spaces of continuous functions and of strictly differentiable functions, isomorphisms between Banach function spaces, and measure and integration. Other topics discussed in this volume include $p$-adic differential and $q$-difference equations, rational and non-Archimedean analytic functions, the spectrum of some algebras of analytic functions, and maximal ideals of the ultrametric corona algebra.
## An Introduction to Ultrametric Summability Theory

Ultrametric analysis has emerged as an important branch of mathematics in recent years. This book presents, for the first time, a brief survey of the research to date in ultrametric summability theory, which is a fusion of a classical branch of mathematics (summability theory) with a modern branch of analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis.
## Ultrametric Functional Analysis

With contributions by leading mathematicians, this proceedings volume reflects the program of the Eighth International Conference on $p$-adic Functional Analysis held at Blaise Pascal University (Clemont-Ferrand, France). Articles in the book offer a comprehensive overview of research in the area. A wide range of topics are covered, including basic ultrametric functional analysis, topological vector spaces, measure and integration, Choquet theory, Banach and topological algebras, analytic functions (in particular, in connection with algebraic geometry), roots of rational functions and Frobenius structure in $p$-adic differential equations, and $q$-ultrametric calculus. The material is suitable for graduate students and researchers interested in number theory, functional analysis, and algebra.
## Spinning Tops

Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. A modern view of the role played by algebraic geometry has been established iby many mathematicians. This book presents some of these techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, whilst in appendices the general, abstract theory is described. The methods are given a topological application to the study of Liouville tori and their bifurcations. The book is based on courses for graduate students given by the author at Strasbourg University but the wealth of original ideas will make it also appeal to researchers.
## Mathematical Reviews

## Grundideen der Mathematik

## Ultrametric Functional Analysis

With contributions by leading mathematicians, this proceedings volume reflects the program of the Eighth International Conference on $p$-adic Functional Analysis held at Blaise Pascal University (Clermont-Ferrand, France). Articles in the book offer a comprehensive overview of research in the area. A wide range of topics are covered, including basic ultrametric functional analysis, topological vector spaces, measure and integration, Choquet theory, Banach and topological algebras,analytic functions (in particular, in connection with algebraic geometry), roots of rational functions and Frobenius structure in $p$-adic differential equations, and $q$-ultrametric calculus. The material is suitable for graduate students and researchers interested in number theory, functionalanalysis, and algebra.
## Simon Stevin

## Report

## Studia Universitatis Babeș-Bolyai

## Reviews in Number Theory, 1984-96

These six volumes include approximately 20,000 reviews of items in number theory that appeared in Mathematical Reviews between 1984 and 1996. This is the third such set of volumes in number theory. The first was edited by W.J. LeVeque and included reviews from 1940-1972; the second was edited by R.K. Guy and appeared in 1984.

Just another PDF Download site

Mathematics

Education

Functional analysis

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics