Philosophy

Visual Thinking in Mathematics

Author: Marcus Giaquinto

Publisher: OUP Oxford

ISBN:

Category: Philosophy

Page: 298

View: 710

Marcus Giaquinto presents an investigation into the different kinds of visual thinking involved in mathematical thought, drawing on work in cognitive psychology, philosophy, and mathematics. He argues that mental images and physical diagrams are rarely just superfluous aids: they are often a means of discovery, understanding, and even proof.
Philosophy

Visual Thinking in Mathematics

Author: Marcus Giaquinto

Publisher: Clarendon Press

ISBN:

Category: Philosophy

Page: 298

View: 226

Visual thinking - visual imagination or perception of diagrams and symbol arrays, and mental operations on them - is omnipresent in mathematics. Is this visual thinking merely a psychological aid, facilitating grasp of what is gathered by other means? Or does it also have epistemological functions, as a means of discovery, understanding, and even proof? By examining the many kinds of visual representation in mathematics and the diverse ways in which they are used, Marcus Giaquintoargues that visual thinking in mathematics is rarely just a superfluous aid; it usually has epistemological value, often as a means of discovery. Drawing from philosophical work on the nature of concepts and from empirical studies of visual perception, mental imagery, and numerical cognition,Giaquinto explores a major source of our grasp of mathematics, using examples from basic geometry, arithmetic, algebra, and real analysis. He shows how we can discern abstract general truths by means of specific images, how synthetic a priori knowledge is possible, and how visual means can help us grasp abstract structures.Visual Thinking in Mathematics reopens the investigation of earlier thinkers from Plato to Kant into the nature and epistemology of an individual's basic mathematical beliefs and abilities, in the new light shed by the maturing cognitive sciences. Clear and concise throughout, it will appeal to scholars and students of philosophy, mathematics, and psychology, as well as anyone with an interest in mathematical thinking.
Mathematics

Proofs Without Words

Author: Malcolm Scott MacKenzie

Publisher: MAA

ISBN:

Category: Mathematics

Page: 140

View: 514

Proofs without words are generally pictures or diagrams that help the reader see why a particular mathematical statement may be true, and how one could begin to go about proving it. While in some proofs without words an equation or two may appear to help guide that process, the emphasis is clearly on providing visual clues to stimulate mathematical thought. The proofs in this collection are arranged by topic into five chapters: Geometry and algebra; Trigonometry, calculus and analytic geometry; Inequalities; Integer sums; and Sequences and series. Teachers will find that many of the proofs in this collection are well suited for classroom discussion and for helping students to think visually in mathematics.
Education

Visible Thinking in the K–8 Mathematics Classroom

Author: Ted H. Hull

Publisher: Corwin Press

ISBN:

Category: Education

Page: 184

View: 707

Seeing is believing with this interactive approach to math instruction Do you ever wish your students could read each other’s thoughts? Now they can—and so can you! This newest book by veteran mathematics educators provides instructional strategies for maximizing students’ mathematics comprehension by integrating visual thinking into the classroom. Included are numerous grade-specific sample problems for teaching essential concepts such as number sense, fractions, and estimation. Among the many benefits of visible thinking are: Interactive student-to-student learning Increased class participation Development of metacognitive thinking and problem-solving skills
Education

Toward a Visually-Oriented School Mathematics Curriculum

Author: Ferdinand Rivera

Publisher: Springer Science & Business Media

ISBN:

Category: Education

Page: 316

View: 628

What does it mean to have a visual representation of a mathematical object, concept, or process? What visualization strategies support growth in mathematical thinking, reasoning, generalization, and knowledge? Is mathematical seeing culture-free? How can information drawn from studies in blind subjects help us understand the significance of a multimodal approach to learning mathematics? Toward a Visually-Oriented School Mathematics Curriculum explores a unified theory of visualization in school mathematical learning via the notion of progressive modeling. Based on the author’s longitudinal research investigations in elementary and middle school classrooms, the book provides a compelling empirical account of ways in which instruction can effectively orchestrate the transition from personally-constructed visuals, both externally-drawn and internally-derived, into more structured visual representations within the context of a socioculturally grounded mathematical activity. Both for teachers and researchers, a discussion of this topic is relevant in the history of the present. The ubiquity of technological tools and virtual spaces for learning and doing mathematics has aroused interest among concerned stakeholders about the role of mathematics in these contexts. The book begins with a prolegomenon on the author’s reflections on past and present visual studies in mathematics education. In the remaining seven chapters, visualization is pursued in terms of its role in bringing about progressions in mathematical symbolization, abduction, pattern generalization, and diagrammatization. Toward a Visually-Oriented School Mathematics Curriculum views issues surrounding visualization through the eyes of a classroom teacher-researcher; it draws on findings within and outside of mathematics education that help practitioners and scholars gain a better understanding of what it means to pleasurably experience the symmetric visual/symbolic reversal phenomenon – that is, seeing the visual in the symbolic and the symbolic in the visual."
Mathematics

Visualization, Explanation and Reasoning Styles in Mathematics

Author: P. Mancosu

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 300

View: 975

In the 20th century philosophy of mathematics has to a great extent been dominated by views developed during the so-called foundational crisis in the beginning of that century. These views have primarily focused on questions pertaining to the logical structure of mathematics and questions regarding the justi?cation and consistency of mathematics. Paradigmatic in this - spect is Hilbert’s program which inherits from Frege and Russell the project to formalize all areas of ordinary mathematics and then adds the requi- ment of a proof, by epistemically privileged means (?nitistic reasoning), of the consistency of such formalized theories. While interest in modi?ed v- sions of the original foundational programs is still thriving, in the second part of the twentieth century several philosophers and historians of mat- matics have questioned whether such foundational programs could exhaust the realm of important philosophical problems to be raised about the nature of mathematics. Some have done so in open confrontation (and hostility) to the logically based analysis of mathematics which characterized the cl- sical foundational programs, while others (and many of the contributors to this book belong to this tradition) have only called for an extension of the range of questions and problems that should be raised in connection with an understanding of mathematics. The focus has turned thus to a consideration of what mathematicians are actually doing when they produce mathematics. Questions concerning concept-formation, understanding, heuristics, changes instyle of reasoning, the role of analogies and diagrams etc.
Mathematics

Proofs Without Words III

Author: Roger B. Nelsen

Publisher: The Mathematical Association of America

ISBN:

Category: Mathematics

Page: 187

View: 303

Proofs without words (PWWs) are figures or diagrams that help the reader see why a particular mathematical statement is true, and how one might begin to formally prove it true. PWWs are not new, many date back to classical Greece, ancient China, and medieval Europe and the Middle East. PWWs have been regular features of the MAA journals Mathematics Magazine and The College Mathematics Journal for many years, and the MAA published the collections of PWWs Proofs Without Words: Exercises in Visual Thinking in 1993 and Proofs Without Words II: More Exercises in Visual Thinking in 2000. This book is the third such collection of PWWs. The proofs in the book are divided by topic into five chapters: Geometry & Algebra; Trigonometry, Calculus & Analytic Geometry; Inequalities; Integers & Integer Sums; and Infinite Series & Other Topics. The proofs in the book are intended primarily for the enjoyment of the reader, however, teachers will want to use them with students at many levels: high school courses from algebra through precalculus and calculus; college level courses in number theory, combinatorics, and discrete mathematics; and pre-service and in-service courses for teachers.
Mathematics

Visualization in Teaching and Learning Mathematics

Author: Walter Zimmermann

Publisher: MAA Press

ISBN:

Category: Mathematics

Page: 224

View: 687

The twenty papers in the book give an overview of research analysis, practical experience, and informed opinion about the role of visualization in teaching and learning mathematics, especially at the undergraduate level. Visualization, in its broadest level. Visualization, in its broadest sense, is as old as mathematics, but progress in computer graphics has generated a renaissance of interest in visual representations and visual thinking in mathematics.
Mathematics

Key Ideas in Teaching Mathematics

Author: Anne Watson

Publisher: OUP Oxford

ISBN:

Category: Mathematics

Page: 272

View: 978

Big ideas in the mathematics curriculum for older school students, especially those that are hard to learn and hard to teach, are covered in this book. It will be a first port of call for research about teaching big ideas for students from 9-19 and also has implications for a wider range of students. These are the ideas that really matter, that students get stuck on, and that can be obstacles to future learning. It shows how students learn, why they sometimes get things wrong, and the strengths and pitfalls of various teaching approaches. Contemporary high-profile topics like modelling are included. The authors are experienced teachers, researchers and mathematics educators, and many teachers and researchers have been involved in the thinking behind this book, funded by the Nuffield Foundation. An associated website, hosted by the Nuffield Foundation, summarises the key messages in the book and connects them to examples of classroom tasks that address important learning issues about particular mathematical ideas.
Mathematics

How to Think About Analysis

Author: Lara Alcock

Publisher: OUP Oxford

ISBN:

Category: Mathematics

Page: 272

View: 905

Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.