**Author**: Yves Meyer

**Publisher:** Cambridge University Press

**ISBN:** 9780521458696

**Category:** Mathematics

**Page:** 244

**View:** 6018

Skip to content
# Free eBooks PDF

## Wavelets and Operators:

Over the last two years, wavelet methods have shown themselves to be of considerable use to harmonic analysts and, in particular, advances have been made concerning their applications. The strength of wavelet methods lies in their ability to describe local phenomena more accurately than a traditional expansion in sines and cosines can. Thus, wavelets are ideal in many fields where an approach to transient behaviour is needed, for example, in considering acoustic or seismic signals, or in image processing. Yves Meyer stands the theory of wavelets firmly upon solid ground by basing his book on the fundamental work of Calderón, Zygmund and their collaborators. For anyone who would like an introduction to wavelets, this book will prove to be a necessary purchase.
## Wavelets in Geophysics

Applications of wavelet analysis to the geophysical sciences grew from Jean Morlet's work on seismic signals in the 1980s. Used to detect signals against noise, wavelet analysis excels for transients or for spatiallylocalized phenomena. In this fourth volume in the renown WAVELET ANALYSIS AND ITS APPLICATIONS Series, Efi Foufoula-Georgiou and Praveen Kumar begin with a self-contained overview of the nature, power, and scope of wavelet transforms. The eleven originalpapers that follow in this edited treatise show how geophysical researchers are using wavelets to analyze such diverse phenomena as intermittent atmospheric turbulence, seafloor bathymetry, marine and other seismic data, and flow in aquifiers. Wavelets in Geophysics will make informative reading for geophysicists seeking an up-to-date account of how these tools are being used as well as for wavelet researchers searching for ideas for applications, or even new points of departure. Key Features * Includes twelve original papers written by experts in the geophysical sciences * Provides a self-contained overview of the nature, power, and scope of wavelet transforms * Presents applications of wavelets to geophysical phenomena such as: * The sharp events of seismic data *Long memory processes, such as fluctuation in the level of the Nile * A structure preserving decomposition of turbulence signals
## Operator Methods in Wavelets, Tilings, and Frames

This volume contains the proceedings of the AMS Special Session on Harmonic Analysis of Frames, Wavelets, and Tilings, held April 13-14, 2013, in Boulder, Colorado. Frames were first introduced by Duffin and Schaeffer in 1952 in the context of nonharmonic Fourier series but have enjoyed widespread interest in recent years, particularly as a unifying concept. Indeed, mathematicians with backgrounds as diverse as classical and modern harmonic analysis, Banach space theory, operator algebras, and complex analysis have recently worked in frame theory. Frame theory appears in the context of wavelets, spectra and tilings, sampling theory, and more. The papers in this volume touch on a wide variety of topics, including: convex geometry, direct integral decompositions, Beurling density, operator-valued measures, and splines. These varied topics arise naturally in the study of frames in finite and infinite dimensions. In nearly all of the papers, techniques from operator theory serve as crucial tools to solving problems in frame theory. This volume will be of interest not only to researchers in frame theory but also to those in approximation theory, representation theory, functional analysis, and harmonic analysis.
## Selected Papers on Analysis and Differential Equations

This volume contains translations of papers that originally appeared in the Japanese journal ""Sugaku"". The papers range over a variety of topics, including nonlinear partial differential equations, $C^*$-algebras, and Schrodinger operators. The volume is suitable for graduate students and research mathematicians interested in analysis and differential equations.
## A Course on Rough Paths

Lyons’ rough path analysis has provided new insights in the analysis of stochastic differential equations and stochastic partial differential equations, such as the KPZ equation. This textbook presents the first thorough and easily accessible introduction to rough path analysis. When applied to stochastic systems, rough path analysis provides a means to construct a pathwise solution theory which, in many respects, behaves much like the theory of deterministic differential equations and provides a clean break between analytical and probabilistic arguments. It provides a toolbox allowing to recover many classical results without using specific probabilistic properties such as predictability or the martingale property. The study of stochastic PDEs has recently led to a significant extension – the theory of regularity structures – and the last parts of this book are devoted to a gentle introduction. Most of this course is written as an essentially self-contained textbook, with an emphasis on ideas and short arguments, rather than pushing for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis courses and has some interest in stochastic analysis. For a large part of the text, little more than Itô integration against Brownian motion is required as background.
## Handbook of Geomathematics

During the last three decades geosciences and geo-engineering were influenced by two essential scenarios: First, the technological progress has changed completely the observational and measurement techniques. Modern high speed computers and satellite based techniques are entering more and more all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as spaceborne data of better and better quality explain the strong need of new mathematical structures, tools, and methods. Mathematics concerned with geoscientific problems, i.e., Geomathematics, is becoming increasingly important. The ‘Handbook Geomathematics’ as a central reference work in this area comprises the following scientific fields: (I) observational and measurement key technologies (II) modelling of the system Earth (geosphere, cryosphere, hydrosphere, atmosphere, biosphere) (III) analytic, algebraic, and operator-theoretic methods (IV) statistical and stochastic methods (V) computational and numerical analysis methods (VI) historical background and future perspectives.
## Current Developments in Mathematics

## Forstliche Forschungsberichte München

## Proceedings of the 1998 Chinese Automation Conference in the UK

## Fluid Problems with Diffusion

## Books in Print, 2004-2005

## Mathematica Japonicae

## Books in Print

## Subject Guide to Books in Print

## The British National Bibliography

## American Book Publishing Record

## American Book Publishing Record

## Wavelets

In der 2. Auflage wird u.a. der Vorteil der Wavelet-Transformation gegenüber der gef. Fourier-Transformation deutlich herausgearbeitet. Die Konstruktionsprinzipien orthogonaler und biorthogonaler Wavelets werden durch Beispiele weitergehend erläutert. Zahlreiche Aufgaben erleichtern das Verständnis des Stoffes.

Just another PDF Download site

Mathematics

Science

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Forests and forestry

Automatic control

Heat equation

Literature

Mathematics

American literature

American literature

English literature

American literature

Reference

Technology & Engineering