**Author**: Sergio Albeverio

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Mathematics

**Page:** 252

**View:** 504

Skip to content
# Free eBooks PDF

## Advances in Analysis, Probability and Mathematical Physics

In 1961 Robinson introduced an entirely new version of the theory of infinitesimals, which he called `Nonstandard analysis'. `Nonstandard' here refers to the nature of new fields of numbers as defined by nonstandard models of the first-order theory of the reals. This system of numbers was closely related to the ring of Schmieden and Laugwitz, developed independently a few years earlier. During the last thirty years the use of nonstandard models in mathematics has taken its rightful place among the various methods employed by mathematicians. The contributions in this volume have been selected to present a panoramic view of the various directions in which nonstandard analysis is advancing, thus serving as a source of inspiration for future research. Papers have been grouped in sections dealing with analysis, topology and topological groups; probability theory; and mathematical physics. This volume can be used as a complementary text to courses in nonstandard analysis, and will be of interest to graduate students and researchers in both pure and applied mathematics and physics.
## Geometry and Analysis of Fractals

This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.
## Geometry and Analysis of Fractals

This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.
## Nonstandard Analysis

1 More than thirty years after its discovery by Abraham Robinson , the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum,as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians.
## Loeb Measures in Practice: Recent Advances

This expanded version of the 1997 European Mathematical Society Lectures given by the author in Helsinki, begins with a self-contained introduction to nonstandard analysis (NSA) and the construction of Loeb Measures, which are rich measures discovered in 1975 by Peter Loeb, using techniques from NSA. Subsequent chapters sketch a range of recent applications of Loeb measures due to the author and his collaborators, in such diverse fields as (stochastic) fluid mechanics, stochastic calculus of variations ("Malliavin" calculus) and the mathematical finance theory. The exposition is designed for a general audience, and no previous knowledge of either NSA or the various fields of applications is assumed.
## Developments in Nonstandard Mathematics

This book contains expository papers and articles reporting on recent research by leading world experts in nonstandard mathematics, arising from the International Colloquium on Nonstandard Mathematics held at the University of Aveiro, Portugal in July 1994. Nonstandard mathematics originated with Abraham Robinson, and the body of ideas that have developed from this theory of nonstandard analysis now vastly extends Robinson's work with infinitesimals. The range of applications includes measure and probability theory, stochastic analysis, differential equations, generalised functions, mathematical physics and differential geometry, moreover, the theory has implicaitons for the teaching of calculus and analysis. This volume contains papers touching on all of the abovbe topics, as well as a biographical note about Abraham Robinson based on the opening address given by W.A>J> Luxemburg - who knew Robinson - to the Aveiro conference which marked the 20th anniversary of Robinson's death. This book will be of particular interest to students and researchers in nonstandard analysis, measure theory, generalised functions and mathematical physics.
## Hypermodels in Mathematical Finance

At the beginning of the new millennium, two unstoppable processes are taking place in the world: (1) globalization of the economy; (2) information revolution. As a consequence, there is greater participation of the world population in capital market investment, such as bonds and stocks and their derivatives. Hence there is a need for risk management and analytic theory explaining the market. This leads to quantitative tools based on mathematical methods, i.e. the theory of mathematical finance. Ever since the pioneer work of Black, Scholes and Merton in the 70's, there has been rapid growth in the study of mathematical finance, involving ever more sophisticated mathematics. However, from the practitioner's point of view, it is desirable to have simpler and more useful mathematical tools. This book introduces research students and practitioners to the intuitive but rigorous hypermodel techniques in finance. It is based on Robinson's infinitesimal analysis, which is easily grasped by anyone with as little background as first-year calculus. It covers topics such as pricing derivative securities (including the Black-Scholes formula), hedging, term structure models of interest rates, consumption and equilibrium. The reader is introduced to mathematical tools needed for the aforementioned topics. Mathematical proofs and details are given in an appendix. Some programs in MATHEMATICA are also included. Contents:Basic Concepts and Practice in FinanceInfinitesimal Analysis and HypermodelsAbsence of ArbitrageExplicit Option PricingPricing with Binary Tree HypermodelsFurther ApplicationsThe Mathematics of HypermodelsAppendix: Mathematica Programs Readership: Graduate students in finance and financial-market practitioners. Keywords:Reviews:“The exposition is clear and detailed, and the enthusiasm of the author shows in every chapter.” Zentralblatt MATH
## The Legacy of Kurt Schütte

This book on proof theory centers around the legacy of Kurt Schütte and its current impact on the subject. Schütte was the last doctoral student of David Hilbert who was the first to see that proofs can be viewed as structured mathematical objects amenable to investigation by mathematical methods (metamathematics). Schütte inaugurated the important paradigm shift from finite proofs to infinite proofs and developed the mathematical tools for their analysis. Infinitary proof theory flourished in his hands in the 1960s, culminating in the famous bound Γ0 for the limit of predicative mathematics (a fame shared with Feferman). Later his interests shifted to developing infinite proof calculi for impredicative theories. Schütte had a keen interest in advancing ordinal analysis to ever stronger theories and was still working on some of the strongest systems in his eighties. The articles in this volume from leading experts close to his research, show the enduring influence of his work in modern proof theory. They range from eye witness accounts of his scientific life to developments at the current research frontier, including papers by Schütte himself that have never been published before.
## Nonstandard Methods in Functional Analysis

In the early 1960s, by using techniques from the model theory of first-order logic, Robinson gave a rigorous formulation and extension of Leibniz'' infinitesimal calculus. Since then, the methodology has found applications in a wide spectrum of areas in mathematics, with particular success in the probability theory and functional analysis. In the latter, fruitful results were produced with Luxemburg''s invention of the nonstandard hull construction. However, there is still no publication of a coherent and self-contained treatment of functional analysis using methods from nonstandard analysis. This publication aims to fill this gap.
## Stochastic Analysis and Related Topics VIII

Over the last years, stochastic analysis has had an enormous progress with the impetus originating from different branches of mathematics: PDE's and the Malliavin calculus, quantum physics, path space analysis on curved manifolds via probabilistic methods, and more. This volume contains selected contributions which were presented at the 8th Silivri Workshop on Stochastic Analysis and Related Topics, held in September 2000 in Gazimagusa, North Cyprus. The topics include stochastic control theory, generalized functions in a nonlinear setting, tangent spaces of manifold-valued paths with quasi-invariant measures, and applications in game theory, theoretical biology and theoretical physics. Contributors: A.E. Bashirov, A. Bensoussan and J. Frehse, U. Capar and H. Aktuglul, A.B. Cruzeiro and Kai-Nan Xiang, E. Hausenblas, Y. Ishikawa, N. Mahmudov, P. Malliavin and U. Taneri, N. Privault, A.S. stnel.
## Reuniting the Antipodes - Constructive and Nonstandard Views of the Continuum

At first glance, Robinson's original form of nonstandard analysis appears nonconstructive in essence, because it makes a rather unrestricted use of classical logic and set theory and, in particular, of the axiom of choice. Recent developments, however, have given rise to the hope that the distance between constructive and nonstandard mathematics is actually much smaller than it appears. So the time was ripe for the first meeting dedicated simultaneously to both ways of doing mathematics – and to the current and future reunion of these seeming opposites. Consisting of peer-reviewed research and survey articles written on the occasion of such an event, this volume offers views of the continuum from various standpoints. Including historical and philosophical issues, the topics of the contributions range from the foundations, the practice, and the applications of constructive and nonstandard mathematics, to the interplay of these areas and the development of a unified theory.
## Exogenous Factors in Colonic Carcinogenesis

This book is the proceedings of Falk Symposium 128, held in Würzburg, Germany, on May 2-3, 2002, and dedicated to the important issue of colonic carcinogenesis and its underlying genetic and environmental factors. Colorectal cancer is one of the leading causes of cancer-related death in industrialized countries. It has been recognized to be the consequence of a dynamic process leading from hyperproliferative epithelium through different classes of adenomas to invasive carcinoma. This adenoma-carcinoma sequence has been characterized on a molecular basis. Modern molecular biology has also helped to clarify the clustering of colorectal cancer within families, a phenomenon that has been known to clinicians for a long time. Thus, the pathogenesis of the two distinct familial colon cancer syndromes FAP (familial adenomatous polyposis) and HNPCC (hereditary non-polyposis colorectal cancer) is increasingly being understood. Thereby, an identification of affected people has become possible before the disease has manifested. There is also convincing evidence that the pathogenesis of sporadic colonic cancer is modulated by environmental, mainly nutritional, factors. Carcinogens seem to be far less important than the components of the `normal' human diet. It is likely that the interplay between protective and noxious dietary compounds determines the progression of the adenoma-carcinoma sequence. Additionally, a broad spectrum of drugs has been shown to affect colonic tumorigenesis, which provides the rationale for chemoprevention strategies. These issues set the scene for discussions on how genetic and environmental factors may interact in the pathogenesis of colonic cancer, contributing fresh ideas to the prevention of this most prevalent malignancy in the industrialized world.
## Seminar on Stochastic Analysis, Random Fields and Applications

Pure and applied stochastic analysis and random fields form the subject of this book. The collection of articles on these topics represent the state of the art of the research in the field, with particular attention being devoted to stochastic models in finance. Some are review articles, others are original papers; taken together, they will apprise the reader of much of the current activity in the area.
## Analysis, Probability And Mathematical Physics On Fractals

In the 50 years since Mandelbrot identified the fractality of coastlines, mathematicians and physicists have developed a rich and beautiful theory describing the interplay between analytic, geometric and probabilistic aspects of the mathematics of fractals. Using classical and abstract analytic tools developed by Cantor, Hausdorff, and Sierpinski, they have sought to address fundamental questions: How can we measure the size of a fractal set? How do waves and heat travel on irregular structures? How are analysis, geometry and stochastic processes related in the absence of Euclidean smooth structure? What new physical phenomena arise in the fractal-like settings that are ubiquitous in nature?This book introduces background and recent progress on these problems, from both established leaders in the field and early career researchers. The book gives a broad introduction to several foundational techniques in fractal mathematics, while also introducing some specific new and significant results of interest to experts, such as that waves have infinite propagation speed on fractals. It contains sufficient introductory material that it can be read by new researchers or researchers from other areas who want to learn about fractal methods and results.
## Infinitesimal Analysis

Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0
## Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion

After functional, measure and stochastic analysis prerequisites, the author covers chaos decomposition, Skorohod integral processes, Malliavin derivative and Girsanov transformations.
## Nonlinearity, Chaos, and Complexity

Covering a broad range of topics and adopting a detailed philosophical approach to the subject, this text provides a comprehensive survey of the modelling of chaotic dynamics and complexity in the natural and social sciences.
## Stochastic Processes, Physics and Geometry: New Interplays. I

This volume and Stochastic Processes, Physics and Geometry: New Interplays. II present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, ``Infinite Dimensional (Stochastic) Analysis and Quantum Physics'', was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are written by internationally recognized experts in the fields of stochastic analysis, linear and nonlinear (deterministic and stochastic) PDEs, infinite dimensional analysis, functional analysis, commutative and noncommutative probability theory, integrable systems, quantum and statistical mechanics, geometric quantization, and neural networks. Also included are applications in biology and other areas. Most of the contributions are high-level research papers. However, there are also some overviews on topics of general interest. The articles selected for publication in these volumes were specifically chosen to introduce readers to advanced topics, to emphasize interdisciplinary connections, and to stress future research directions. Volume I contains contributions from invited speakers; Volume II contains additional contributed papers.
## Engineering Mathematics I

This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. In particular, it features mathematical methods and models of applied analysis, probability theory, differential equations, tensor analysis and computational modelling used in applications to important problems concerning electromagnetics, antenna technologies, fluid dynamics, material and continuum physics and financial engineering. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed.The book consists of contributed chapters covering research developed as a result of a focused international seminar series on mathematics and applied mathematics and a series of three focused international research workshops on engineering mathematics organised by the Research Environment in Mathematics and Applied Mathematics at Mälardalen University from autumn 2014 to autumn 2015: the International Workshop on Engineering Mathematics for Electromagnetics and Health Technology; the International Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics; and the 1st Swedish-Estonian International Workshop on Engineering Mathematics, Algebra, Analysis and Applications.It serves as a source of inspiration for a broad spectrum of researchers and research students in applied mathematics, as well as in the areas of applications of mathematics considered in the book.

Just another PDF Download site

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Business & Economics

Mathematics

Mathematics

Mathematics

Mathematics

Medical

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematical physics

Computers