Mathematics

Short Calculus

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 260

View: 184

From the reviews "This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." --Mathematical Gazette
Mathematics

A First Course in Calculus

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 731

View: 603

This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.
Mathematics

Introduction to Calculus and Classical Analysis

Author: Omar Hijab

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 342

View: 238

Intended for an honors calculus course or for an introduction to analysis, this is an ideal text for undergraduate majors since it covers rigorous analysis, computational dexterity, and a breadth of applications. The book contains many remarkable features: * complete avoidance of /epsilon-/delta arguments by using sequences instead * definition of the integral as the area under the graph, while area is defined for every subset of the plane * complete avoidance of complex numbers * heavy emphasis on computational problems * applications from many parts of analysis, e.g. convex conjugates, Cantor set, continued fractions, Bessel functions, the zeta functions, and many more * 344 problems with solutions in the back of the book.
Mathematics

Calculus With Applications

Author: Peter D. Lax

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 503

View: 570

Burstein, and Lax's Calculus with Applications and Computing offers meaningful explanations of the important theorems of single variable calculus. Written with students in mathematics, the physical sciences, and engineering in mind, and revised with their help, it shows that the themes of calculation, approximation, and modeling are central to mathematics and the main ideas of single variable calculus. This edition brings the innovation of the first edition to a new generation of students. New sections in this book use simple, elementary examples to show that when applying calculus concepts to approximations of functions, uniform convergence is more natural and easier to use than point-wise convergence. As in the original, this edition includes material that is essential for students in science and engineering, including an elementary introduction to complex numbers and complex-valued functions, applications of calculus to modeling vibrations and population dynamics, and an introduction to probability and information theory.
Mathematics

More Calculus of a Single Variable

Author: Peter R. Mercer

Publisher: Springer

ISBN:

Category: Mathematics

Page: 411

View: 737

This book goes beyond the basics of a first course in calculus to reveal the power and richness of the subject. Standard topics from calculus — such as the real numbers, differentiation and integration, mean value theorems, the exponential function — are reviewed and elucidated before digging into a deeper exploration of theory and applications, such as the AGM inequality, convexity, the art of integration, and explicit formulas for π. Further topics and examples are introduced through a plethora of exercises that both challenge and delight the reader. While the reader is thereby exposed to the many threads of calculus, the coherence of the subject is preserved throughout by an emphasis on patterns of development, of proof and argumentation, and of generalization. More Calculus of a Single Variable is suitable as a text for a course in advanced calculus, as a supplementary text for courses in analysis, and for self-study by students, instructors, and, indeed, all connoisseurs of ingenious calculations.
Mathematics

Elementary Analysis

Author: Kenneth A. Ross

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 412

View: 270

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.
Mathematics

Advanced Calculus

Author: James J. Callahan

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 526

View: 648

With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.
Mathematics

A Course in Multivariable Calculus and Analysis

Author: Sudhir R. Ghorpade

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 475

View: 806

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.
Mathematics

Calculus I

Author: Jerrold Marsden

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 388

View: 640

The goal of this text is to help students learn to use calculus intelligently for solving a wide variety of mathematical and physical problems. This book is an outgrowth of our teaching of calculus at Berkeley, and the present edition incorporates many improvements based on our use of the first edition. We list below some of the key features of the book. Examples and Exercises The exercise sets have been carefully constructed to be of maximum use to the students. With few exceptions we adhere to the following policies. • The section exercises are graded into three consecutive groups: (a) The first exercises are routine, modelled almost exactly on the exam ples; these are intended to give students confidence. (b) Next come exercises that are still based directly on the examples and text but which may have variations of wording or which combine different ideas; these are intended to train students to think for themselves. (c) The last exercises in each set are difficult. These are marked with a star (*) and some will challenge even the best students. Difficult does not necessarily mean theoretical; often a starred problem is an interesting application that requires insight into what calculus is really about. • The exercises come in groups of two and often four similar ones.