Mathematics

Topological Properties of Spaces of Continuous Functions

Author: Robert A. McCoy

Publisher: Springer

ISBN:

Category: Mathematics

Page: 130

View: 470

This book brings together into a general setting various techniques in the study of the topological properties of spaces of continuous functions. The two major classes of function space topologies studied are the set-open topologies and the uniform topologies. Where appropriate, the analogous theorems for the two major classes of topologies are studied together, so that a comparison can be made. A chapter on cardinal functions puts characterizations of a number of topological properties of function spaces into a more general setting: some of these results are new, others are generalizations of known theorems. Excercises are included at the end of each chapter, covering other kinds of function space topologies. Thus the book should be appropriate for use in a classroom setting as well as for functional analysis and general topology. The only background needed is some basic knowledge of general topology.
Mathematics

Cellular Structures in Topology

Author: Rudolf Fritsch

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 326

View: 206

This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory.
Mathematics

Mass Transportation Problems

Author: Svetlozar T. Rachev

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 508

View: 784

The first comprehensive account of the theory of mass transportation problems and its applications. In Volume I, the authors systematically develop the theory with emphasis on the Monge-Kantorovich mass transportation and the Kantorovich-Rubinstein mass transshipment problems. They then discuss a variety of different approaches towards solving these problems and exploit the rich interrelations to several mathematical sciences - from functional analysis to probability theory and mathematical economics. The second volume is devoted to applications of the above problems to topics in applied probability, theory of moments and distributions with given marginals, queuing theory, risk theory of probability metrics and its applications to various fields, among them general limit theorems for Gaussian and non-Gaussian limiting laws, stochastic differential equations and algorithms, and rounding problems. Useful to graduates and researchers in theoretical and applied probability, operations research, computer science, and mathematical economics, the prerequisites for this book are graduate level probability theory and real and functional analysis.
Mathematics

Advances in Analysis, Probability and Mathematical Physics

Author: Sergio Albeverio

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 252

View: 206

In 1961 Robinson introduced an entirely new version of the theory of infinitesimals, which he called `Nonstandard analysis'. `Nonstandard' here refers to the nature of new fields of numbers as defined by nonstandard models of the first-order theory of the reals. This system of numbers was closely related to the ring of Schmieden and Laugwitz, developed independently a few years earlier. During the last thirty years the use of nonstandard models in mathematics has taken its rightful place among the various methods employed by mathematicians. The contributions in this volume have been selected to present a panoramic view of the various directions in which nonstandard analysis is advancing, thus serving as a source of inspiration for future research. Papers have been grouped in sections dealing with analysis, topology and topological groups; probability theory; and mathematical physics. This volume can be used as a complementary text to courses in nonstandard analysis, and will be of interest to graduate students and researchers in both pure and applied mathematics and physics.
Mathematics

Dynamics, Games and Science I

Author: Mauricio Matos Peixoto

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 809

View: 564

Dynamics, Games and Science I and II are a selection of surveys and research articles written by leading researchers in mathematics. The majority of the contributions are on dynamical systems and game theory, focusing either on fundamental and theoretical developments or on applications to modeling in biology, ecomonics, engineering, finances and psychology. The papers are based on talks given at the International Conference DYNA 2008, held in honor of Mauricio Peixoto and David Rand at the University of Braga, Portugal, on September 8-12, 2008. The aim of these volumes is to present cutting-edge research in these areas to encourage graduate students and researchers in mathematics and other fields to develop them further.
Mathematics

Gibbs Measures and Phase Transitions

Author: Hans-Otto Georgii

Publisher: Walter de Gruyter

ISBN:

Category: Mathematics

Page: 556

View: 1000

From a review of the first edition: "This book […] covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics. […] It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert." (F. Papangelou, Zentralblatt MATH) The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.
Mathematics

Extremal Families and Systems of Sufficient Statistics

Author: Steffen L. Lauritzen

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 268

View: 695

The pOint of view behind the present work is that the connection between a statistical model and a statistical analysis-is a dua lity (in a vague sense). In usual textbooks on mathematical statistics it is often so that the statistical model is given in advance and then various in ference principles are applied to deduce the statistical ana lysis to be performed. It is however possible to reverse the above procedure: given that one wants to perform a certain statistical analysis, how can this be expressed in terms of a statistical model? In that sense we think of the statistical analysis and the stati stical model as two ways of expressing the same phenomenon, rather than thinking of the model as representing an idealisation of "truth" and the statistical analysis as a method of revealing that truth to the scientist. It is not the aim of the present work to solve the problem of giving the correct-anq final mathematical description of the quite complicated relation between model and analysis. We have rather restricted ourselves to describe a particular aspect of this, formulate it in mathematical terms, and then tried to make a rigorous and consequent investigation of that mathematical struc ture.
Mathematics

Functional Analysis II

Author: Svetozar Kurepa

Publisher: Springer

ISBN:

Category: Mathematics

Page: 438

View: 669

This volume consists of a long monographic paper by J. Hoffmann-Jorgensen and a number of shorter research papers and survey articles covering different aspects of functional analysis and its application to probability theory and differential equations.
Mathematics

Constructions of Lie Algebras and their Modules

Author: George B. Seligman

Publisher: Springer

ISBN:

Category: Mathematics

Page: 196

View: 965

This book deals with central simple Lie algebras over arbitrary fields of characteristic zero. It aims to give constructions of the algebras and their finite-dimensional modules in terms that are rational with respect to the given ground field. All isotropic algebras with non-reduced relative root systems are treated, along with classical anisotropic algebras. The latter are treated by what seems to be a novel device, namely by studying certain modules for isotropic classical algebras in which they are embedded. In this development, symmetric powers of central simple associative algebras, along with generalized even Clifford algebras of involutorial algebras, play central roles. Considerable attention is given to exceptional algebras. The pace is that of a rather expansive research monograph. The reader who has at hand a standard introductory text on Lie algebras, such as Jacobson or Humphreys, should be in a position to understand the results. More technical matters arise in some of the detailed arguments. The book is intended for researchers and students of algebraic Lie theory, as well as for other researchers who are seeking explicit realizations of algebras or modules. It will probably be more useful as a resource to be dipped into, than as a text to be worked straight through.
Mathematics

Stochastic Analysis

Author: Michel Metivier

Publisher: Springer

ISBN:

Category: Mathematics

Page: 202

View: 161

Annotation Contents: G. Benarous: Noyau de la chaleur hypoelliptique et géométrie sous-riemannienne.- M. Fukushima: On two Classes of Smooth Measures for Symmetric Markov Processes.- T. Funaki: The Hydrodynamical Limit for Scalar Ginzburg-Landau Model on R.- N. Ikeda, S. Kusuoka: Short time Asymptotics for Fundamental Solutions of Diffusion Equations.- K. Ito: Malliavin Calculus on a Segal Space.- Y. Kasahara, M. Maejima: Weak Convergence of Functionals of Point Processes on Rd.- Y. Katznelson, P. Malliavin: Image des Points critiques d'une application régulière.- S. Kusuoka: Degree Theorem in Certain Wiener Riemannian Manifolds.- R. Leandre: Applications quantitatives et géométrique du calcul de Malliavin.- Y. Le Jan: On the Fock Space Representation of Occupations Times for non Reversible Markov Processes.- M. Metivier, M. Viot: On Weak Solutions of Stochastic Partial Differential Equations.- P.A. Meyer: Une remarque sur les Chaos de Wiener.- H. Tanaka: Limit Theorem for One-Dimensional Diffusion Process in Brownian Environment.- H. Uemura, S. Watanabe: Diffusion Processes and Heat Kernels on Certain Nilpotent Groups.
Mathematics

Algebraic Geometry. Sundance 1986

Author: Audun Holme

Publisher: Springer

ISBN:

Category: Mathematics

Page: 324

View: 607

This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
Mathematics

Stochastic Analysis and Related Topics

Author: Hayri Korezlioglu

Publisher: Springer

ISBN:

Category: Mathematics

Page: 371

View: 144

The Silvri Workshop was divided into a short summer school and a working conference, producing lectures and research papers on recent developments in stochastic analysis on Wiener space. The topics treated in the lectures relate to the Malliavin calculus, the Skorohod integral and nonlinear functionals of white noise. Most of the research papers are applications of these subjects. This volume addresses researchers and graduate students in stochastic processes and theoretical physics.