**Author**: Yuliya S. Mishura

**Publisher:**

**ISBN:**

**Category:**

**Page:** 292

**View:** 618

Skip to content
# Free eBooks PDF

## Discrete-Time Approximations and Limit Theorems

Financial market modeling is a prime example of a real-life application of probability theory and stochastics. This authoritative book discusses the discrete-time approximation and other qualitative properties of models of financial markets, like the Black-Scholes model and its generalizations, offering in this way rigorous insights on one of the most interesting applications of mathematics nowadays.
## A Long-Run Collaboration on Long-Run Games

This book brings together the joint work of Drew Fudenberg and David Levine (through 2008) on the closely connected topics of repeated games and reputation effects, along with related papers on more general issues in game theory and dynamic games. The unified presentation highlights the recurring themes of their work.
## Basics of Applied Stochastic Processes

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
## The Mathematics of Internet Congestion Control

* Recommended by T.Basar, SC series ed. * This text addresses a new, active area of research and fills a gap in the literature. * Bridges mathematics, engineering, and computer science; considers stochastic and optimization aspects of congestion control in Internet data transfers. * Useful as a supplementary text & reference for grad students with some background in control theory; also suitable for researchers.
## Numerical Solution of SDE Through Computer Experiments

This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.
## Inference for Diffusion Processes

Diffusion processes are a promising instrument for realistically modelling the time-continuous evolution of phenomena not only in the natural sciences but also in finance and economics. Their mathematical theory, however, is challenging, and hence diffusion modelling is often carried out incorrectly, and the according statistical inference is considered almost exclusively by theoreticians. This book explains both topics in an illustrative way which also addresses practitioners. It provides a complete overview of the current state of research and presents important, novel insights. The theory is demonstrated using real data applications.
## Numerical Solution of Stochastic Differential Equations

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
## Probability Methods for Approximations in Stochastic Control and for Elliptic Equations

Probability Methods for Approximations in Stochastic Control and for Elliptic Equations
## Stochastic Approximation and Recursive Algorithms and Applications

This book presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. This second edition is a thorough revision, although the main features and structure remain unchanged. It contains many additional applications and results as well as more detailed discussion.
## Discrete-Time Markov Chains

This book focuses on two-time-scale Markov chains in discrete time. Our motivation stems from existing and emerging applications in optimization and control of complex systems in manufacturing, wireless communication, and ?nancial engineering. Much of our e?ort in this book is devoted to designing system models arising from various applications, analyzing them via analytic and probabilistic techniques, and developing feasible compu- tionalschemes. Ourmainconcernistoreducetheinherentsystemcompl- ity. Although each of the applications has its own distinct characteristics, all of them are closely related through the modeling of uncertainty due to jump or switching random processes. Oneofthesalientfeaturesofthisbookistheuseofmulti-timescalesin Markovprocessesandtheirapplications. Intuitively,notallpartsorcom- nents of a large-scale system evolve at the same rate. Some of them change rapidly and others vary slowly. The di?erent rates of variations allow us to reduce complexity via decomposition and aggregation. It would be ideal if we could divide a large system into its smallest irreducible subsystems completely separable from one another and treat each subsystem indep- dently. However, this is often infeasible in reality due to various physical constraints and other considerations. Thus, we have to deal with situations in which the systems are only nearly decomposable in the sense that there are weak links among the irreducible subsystems, which dictate the oc- sional regime changes of the system. An e?ective way to treat such near decomposability is time-scale separation. That is, we set up the systems as if there were two time scales, fast vs. slow. xii Preface Followingthetime-scaleseparation,weusesingularperturbationmeth- ology to treat the underlying systems.
## Probabilistic Symmetries and Invariance Principles

"This is the first comprehensive treatment of the three basic symmetries of probability theory - contractability, exchangeability, and rotatability - defined as invariance in distribution under contractions, permutations, and rotations. Most chapters require only some basic, graduate level probability theory, and should be accessible to any serious researchers and graduate students in probability and statistics. Parts of the book may also be of interest to pure and applied mathematicians in other areas. The exposition is formally self-contained, with detailed references provided for any deeper facts from real analysis or probability used in the book."--Jacket.
## Nonconventional Limit Theorems And Random Dynamics

The book is devoted to limit theorems for nonconventional sums and arrays. Asymptotic behavior of such sums were first studied in ergodic theory but recently it turned out that main limit theorems of probability theory, such as central, local and Poisson limit theorems can also be obtained for such expressions. In order to obtain sufficiently general local limit theorem, we develop also thermodynamic formalism type results for random complex operators, which is one of the novelties of the book. Contents: Nonconventional Limit Theorems: Stein's Method for Nonconventional Sums Local Limit Theorem Nonconventional Arrays Random Transformations Thermodynamic Formalism for Random Complex Operators: Ruelle–Perron–Frobenius Theorem via Cone Contractions Application to Random Locally Expanding Covering Maps Pressure, Asymptotic Variance and Complex Gibbs Measures Application to Random Complex Integral Operators Fiberwise Limit Theorems Readership: Advanced graduate students and researchers in probability theory and stochastic processes and dynamical systems and ergodic theory. Keywords: Limit Theorems;Nonconventional Sums;Nonconventional Arrays;Stochastic Processes;Dynamical Systems;Stein's Method;Martingale Approximation;Thermodynamic Formalism;Strong Law of Large Numbers;Central;Local and Poisson Limit TheoremsReview: Key Features: The results in the book are new and never appeared before, Prof. Yuri Kifer is a well-known researcher in probability and dynamical systems, he published several books and more than 130 papers and he initiated the research on nonconventional limit theorems in the last decade
## Evolution of Biological Systems in Random Media: Limit Theorems and Stability

This is a new book in biomathematics, which includes new models of stochastic non-linear biological systems and new results for these systems. These results are based on the new results for non-linear difference and differential equations in random media. This book contains: -New stochastic non-linear models of biological systems, such as biological systems in random media: epidemic, genetic selection, demography, branching, logistic growth and predator-prey models; -New results for scalar and vector difference equations in random media with applications to the stochastic biological systems in 1); -New results for stochastic non-linear biological systems, such as averaging, merging, diffusion approximation, normal deviations and stability; -New approach to the study of stochastic biological systems in random media such as random evolution approach.
## Numerical Methods for Stochastic Control Problems in Continuous Time

This book is concerned with numerical methods for stochastic control and optimal stochastic control problems. The random process models of the controlled or uncontrolled stochastic systems are either diffusions or jump diffusions. Stochastic control is a very active area of research and new prob lem formulations and sometimes surprising applications appear regularly. We have chosen forms of the models which cover the great bulk of the for mulations of the continuous time stochastic control problems which have appeared to date. The standard formats are covered, but much emphasis is given to the newer and less well known formulations. The controlled process might be either stopped or absorbed on leaving a constraint set or upon first hitting a target set, or it might be reflected or "projected" from the boundary of a constraining set. In some of the more recent applications of the reflecting boundary problem, for example the so-called heavy traffic approximation problems, the directions of reflection are actually discontin uous. In general, the control might be representable as a bounded function or it might be of the so-called impulsive or singular control types. Both the "drift" and the "variance" might be controlled. The cost functions might be any of the standard types: Discounted, stopped on first exit from a set, finite time, optimal stopping, average cost per unit time over the infinite time interval, and so forth.
## Martingale Approximation

## Stochastic Processes

Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.
## Queueing Networks with Discrete Time Scale

Building on classical queueing theory mainly dealing with single node queueing systems, networks of queues, or stochastic networks has been a field of intensive research over the last three decades. Whereas the first breakthrough in queueing network theory was initiated by problems and work in operations research, the second breakthrough, as well as subsequent major work in the area, was closely related to computer science, particularly to performance analysis of complex systems in computer and communication science. The text reports on recent research and development in the area. It is centered around explicit expressions for the steady behavior of discrete time queueing networks and gives a moderately positive answer to the question of whether there can be a product form calculus in discrete time. Originating from a course given by the author at Hamburg University, this book is ideally suited as a text for courses on discrete time stochastic networks.
## Quantum Bio-informatics III

The purpose of this proceedings volume is to look for interdisciplinary bridges in mathematics, physics, information and life sciences, in particular, research for new paradigms for information and life sciences on the basis of quantum theory. The main areas in this volume are all related to one of the following subjects: (1) quantum information, (2) bio-informatics and (3) the interrelation between (1) and (2).

Just another PDF Download site

Mathematics

Mathematics

Science

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Science

Mathematics

Mathematics

Computers

Science