**Author**: Paul R. Halmos

**Publisher:** Courier Dover Publications

**ISBN:**

**Category:** Mathematics

**Page:** 208

**View:** 720

Skip to content
# Free eBooks PDF

## Finite-Dimensional Vector Spaces

Classic, widely cited, and accessible treatment offers an ideal supplement to many traditional linear algebra texts. "Extremely well-written and logical, with short and elegant proofs." — MAA Reviews. 1958 edition.
## Linear Algebra

Text covers sets and mappings, vector spaces, matrices, linear functionals, other basics; plus linear programming, Tchebychev approximations, more. Ideal introduction for undergraduates; reference for theoretical, applied mathematicians. Problems and exercises.
## Introduction to Mathematical Physics

A comprehensive survey of all the mathematical methods that should be available to graduate students in physics. In addition to the usual topics of analysis, such as infinite series, functions of a complex variable and some differential equations as well as linear vector spaces, this book includes a more extensive discussion of group theory than can be found in other current textbooks. The main feature of this textbook is its extensive treatment of geometrical methods as applied to physics. With its introduction of differentiable manifolds and a discussion of vectors and forms on such manifolds as part of a first-year graduate course in mathematical methods, the text allows students to grasp at an early stage the contemporary literature on dynamical systems, solitons and related topological solutions to field equations, gauge theories, gravitational theory, and even string theory. Free solutions manual available for lecturers at www.wiley-vch.de/supplements/.
## Linear Algebra and Geometry

The author of this text seeks to remedy a common failing in teaching algebra: the neglect of related instruction in geometry. Focusing on inner product spaces, orthogonal similarity, and elements of geometry, this volume is illustrated with an abundance of examples, exercises, and proofs and is suitable for both undergraduate and graduate courses. 1974 edition.
## A Course in Functional Analysis and Measure Theory

Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis. Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory. Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.
## Introduction to Hilbert Space and the Theory of Spectral Multiplicity

Concise introductory treatment consists of three chapters: The Geometry of Hilbert Space, The Algebra of Operators, and The Analysis of Spectral Measures. A background in measure theory is the sole prerequisite. 1957 edition.
## Linear Algebra

Introductory treatment covers basic theory of vector spaces and linear maps — dimension, determinants, eigenvalues, and eigenvectors — plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
## Basic Algebra I

A classic text and standard reference for a generation, this volume covers all undergraduate algebra topics, including groups, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. 1985 edition.
## Wavelet Structure and Design

## The Six Core Theories of Modern Physics

""The Six Core Theories of Modern Physics" is a useful and amazingly compact compendium of the central equations and concepts of modern physics, treating broad areas while stressing their underlying unity. It stands as an ideal summary of all that a beginning graduate student should have learned, and that other scientists with a physics background will want to recall." -- Dr. Daniel Gardner, Cornell University Medical College Charles Stevens, a prominent neurobiologist who originally trained as a biophysicist (with George Uhlenbeck and Mark Kac), wrote this book almost by accident. Each summer he found himself reviewing key areas of physics that he had once known and understood well, for use in his present biological research. Since there was no book, he created his own set of notes, which formed the basis for this brief, clear, and self-contained summary of the basic theoretical structures of classical mechanics, electricity and magnetism, quantum mechanics, statistical physics, special relativity, and quantum field theory. "The Six Core Theories of Modern Physics" can be used by advanced undergraduates or beginning graduate students as a supplement to the standard texts or for an uncluttered, succinct review of the key areas. Professionals in such quantitative sciences as chemistry, engineering, computer science, applied mathematics, and biophysics who need to brush up on the essentials of a particular area will find most of the required background material, including the mathematics.

Just another PDF Download site

Mathematics

Mathematics

Science

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Mathematics

Science