**Author**: T. William Donnelly

**Publisher:** Cambridge University Press

**ISBN:**

**Category:** Science

**Page:** 650

**View:** 791

Skip to content
# Free eBooks PDF

## Foundations of Nuclear and Particle Physics

This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.
## Foundations of Nuclear and Particle Physics

This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.
## Nuclear and Particle Physics

Updated and expanded edition of this well-known Physics textbook provides an excellent Undergraduate introduction to the field This new edition of Nuclear and Particle Physics continues the standards established by its predecessors, offering a comprehensive and highly readable overview of both the theoretical and experimental areas of these fields. The updated and expanded text covers a very wide range of topics in particle and nuclear physics, with an emphasis on the phenomenological approach to understanding experimental data. It is one of the few publications currently available that gives equal treatment to both fields, while remaining accessible to undergraduates. Early chapters cover basic concepts of nuclear and particle physics, before describing their respective phenomenologies and experimental methods. Later chapters interpret data through models and theories, such as the standard model of particle physics, and the liquid drop and shell models of nuclear physics, and also discuss many applications of both fields. The concluding two chapters deal with practical applications and outstanding issues, including extensions to the standard model, implications for particle astrophysics, improvements in medical imaging, and prospects for power production. There are a number of useful appendices. Other notable features include: New or expanded coverage of developments in relevant fields, such as the discovery of the Higgs boson, recent results in neutrino physics, research to test theories beyond the standard model (such as supersymmetry), and important technical advances, such as Penning traps used for high-precision measurements of nuclear masses. Practice problems at the end of chapters (excluding the last chapter) with solutions to selected problems provided in an appendix, as well as an extensive list of references for further reading. Companion website with solutions (odd-numbered problems for students, all problems for instructors), PowerPoint lecture slides, and other resources. As with previous editions, the balanced coverage and additional resources provided, makes Nuclear and Particle Physics an excellent foundation for advanced undergraduate courses, or a valuable general reference text for early graduate studies.
## Nuclear and Particle Physics

An accessible introduction to nuclear and particle physics with equal coverage of both topics, this text covers all the standard topics in particle and nuclear physics thoroughly and provides a few extras, including chapters on experimental methods; applications of nuclear physics including fission, fusion and biomedical applications; and unsolved problems for the future. It includes basic concepts and theory combined with current and future applications. An excellent resource for physics and astronomy undergraduates in higher-level courses, this text also serves well as a general reference for graduate studies.
## The Cosmic Power

## Foundations of Nuclear Physics

## The Experimental Foundations of Particle Physics

A unique presentation of our current understanding of particle physics for researchers, advanced undergraduate and graduate students.
## Comments on Nuclear and Particle Physics

## Foundations of Perturbative QCD

The most non-trivial of the established microscopic theories of physics is QCD: the theory of the strong interaction. A critical link between theory and experiment is provided by the methods of perturbative QCD, notably the well-known factorization theorems. Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. As well as giving a mathematical treatment, the book relates the concepts to experimental data, giving strong motivations for the methods. It also examines in detail transverse-momentum-dependent parton densities, an increasingly important subject not normally treated in other books. Ideal for graduate students starting their work in high-energy physics, it will also interest experienced researchers wanting a clear account of the subject.
## Particles and Fundamental Interactions

The book provides theoretical and phenomenological insights on the structure of matter, presenting concepts and features of elementary particle physics and fundamental aspects of nuclear physics. Starting with the basics (nomenclature, classification, acceleration techniques, detection of elementary particles), the properties of fundamental interactions (electromagnetic, weak and strong) are introduced with a mathematical formalism suited to undergraduate students. Some experimental results (the discovery of neutral currents and of the W± and Z0 bosons; the quark structure observed using deep inelastic scattering experiments) show the necessity of an evolution of the formalism. This motivates a more detailed description of the weak and strong interactions, of the Standard Model of the microcosm with its experimental tests, and of the Higgs mechanism. The open problems in the Standard Model of the microcosm and macrocosm are presented at the end of the book. For example, the CP violation currently measured does not explain the matter-antimatter asymmetry of the observable universe; the neutrino oscillations and the estimated amount of cosmological dark matter seem to require new physics beyond the Standard Model. A list of other introductory texts, work reviews and some specialized publications is reported in the bibliography. Translation from the Italian Language Edition "Particelle e interazioni fondamentali" by Sylvie Braibant, Giorgio Giacomelli, and Maurizio Spurio Copyright © Springer-Verlag Italia, 2009 Springer-Verlag Italia is part of Springer Science+Business Media All Rights Reserved
## Particle Physics

An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the ‘compendium’ style physics books. In the Third Edition the standard model of particle physics is carefully developed whilst unnecessary mathematical formalism is avoided where possible. Emphasis is placed on the interpretation of experimental data in terms of the basic properties of quarks and leptons. One of the major developments of the past decade has been the establishing of the existence of neutrino oscillations. This will have a profound effect on the plans of experimentalists. This latest edition brings the text fully up-to-date, and includes new sections on neutrino physics, as well as expanded coverage of detectors, such as the LHC detector. End of chapter problems with a full set of hints for their solutions provided at the end of the book. An accessible and carefully structured introduction to this demanding subject. Includes more advanced material in optional ‘starred’ sections. Coverage of the foundations of the subject, as well as the very latest developments.
## Conceptual Foundations of Modern Particle Physics

For scientific, technological and organizational reasons, the end of World War II (in 1945) saw a rapid acceleration in the tempo of discovery and understanding in nuclear physics, cosmic rays and quantum field theory, which together triggered the birth of modern particle physics. The first fifteen years (1945–60) following the war's end — the “Startup Period” in modern particle physics -witnessed a series of major experimental and theoretical developments that began to define the conceptual contours (non-Abelian internal symmetries, Yang-Mills fields, renormalization group, chirality invariance, baryon-lepton symmetry in weak interactions, spontaneous symmetry breaking) of the quantum field theory of three of the basic interactions in nature (electromagnetic, strong and weak). But it took another fifteen years (1960-75) — the “Heroic Period” in modern particle physics — to unravel the physical content and complete the mathematical formulation of the standard gauge theory of the strong and electroweak interactions among the three generations of quarks and leptons. The impressive accomplishments during the “Heroic Period” were followed by what is called the “period of consolidation and speculation (1975–1990)”, which includes the experimental consolidation of the standard model (SM) through precision tests, theoretical consolidation of SM through the search for more rigorous mathematical solutions to the Yang-Mills-Higgs equations, and speculative theoretical excursions “beyond SM”. Within this historical-conceptual framework, the author — himself a practicing particle theorist for the past fifty years — attempts to trace the highlights in the conceptual evolution of modern particle physics from its early beginnings until the present time. Apart from the first chapter — which sketches a broad overview of the entire field — the remaining nine chapters of the book offer detailed discussions of the major concepts and principles that prevailed and were given wide currency during each of the fifteen-year periods that comprise the history of modern particle physics. Those concepts and principles that contributed only peripherally to the standard model are given less coverage but an attempt is made to inform the reader about such contributions (which may turn out to be significant at a future time) and to suggest references that supply more information. Chapters 2 and 3 of the book cover a range of topics that received dedicated attention during the “Startup Period” although some of the results were not incorporated into the structure of the standard model. Chapters 4-6 constitute the core of the book and try to recapture much of the conceptual excitement of the “Heroic Period”, when quantum flavordynamics (QFD) and quantum chromodynamics (QCD) received their definitive formulation. [It should be emphasized that, throughout the book, logical coherence takes precedence over historical chronology (e.g. some of the precision tests of QFD are discussed in Chapter 6)]. Chapter 7 provides a fairly complete discussion of the chiral gauge anomalies in four dimensions with special application to the standard model (although the larger unification models are also considered). The remaining three chapters of the book (Chapters 7-10) cover concepts and principles that originated primarily during the “Period of Consolidation and Speculation” but, again, this is not a literal statement. Chapters 8 and 9 report on two of the main directions that were pursued to overcome acknowledged deficiencies of the standard model: unification models in Chapter 8 and attempts to account for the existence of precisely three generations of quarks and leptons, primarily by means of preon models, in Chapter 9. The most innovative of the final three chapters of the book is Chapter 10 on topological conservation laws. This last chapter tries to explain the significance of topologically non-trivial solutions in four-dimensional (space-time) particle physics (e.g. 't Hooft-Polyakov monopoles, instantons, sphalerons, global SU(2) anomaly, Wess-Zumino term, etc.) and to reflect on some of the problems that have ensued (e.g. the “strong CP problem” in QCD) from this effort. It turns out that the more felicitous topological applications of field theory are found — as of now — in condensed matter physics; these successful physical applications (to polyacetylene, quantized magnetic flux in type-II low temperature superconductivity, etc.) are discussed in Chapter 10, as a good illustration of the conceptual unity of modern physics. Request Inspection Copy
## Gaseous Radiation Detectors

Describes the fundamentals and applications of gaseous radiation detection, ideal for researchers and experimentalists in nuclear and particle physics.
## Quantum Mechanics: Fundamentals

Quantum mechanics was already an old and solidly established subject when the first edition of this book appeared in 1966. The context in which a graduate text on quantum mechanics is studied today has changed a good deal, however. In 1966, most entering physics graduate students had a quite limited exposure to quan tum mechanics in the form of wave mechanics. Today the standard undergraduate curriculum contains a large dose of elementary quantum mechanics, and often intro duces the abstract formalism due to Dirac. Back then, the study of the foundations by theorists and experimenters was close to dormant, and very few courses spent any time whatever on this topic. At that very time, however, John Bell's famous theorem broke the ice, and there has been a great flowering ever since, especially in the laboratory thanks to the development of quantum optics, and more recently because of the interest in quantum computing. And back then, the Feynman path integral was seen by most as a very imaginative but rather useless formulation of quantum mechanics, whereas it now plays a large role in statistical physics and quantum field theory, especially in computational work. For these and other reasons, this book is not just a revision of the 1966 edition. It has been rewritten throughout, is differently organized, and goes into greater depth on many topics that were in the old edition.
## Advanced Quantum Mechanics

This book covers advanced topics in quantum mechanics, including nonrelativistic multi-particle systems, relativistic wave equations, and relativistic fields. Numerous examples for application help readers gain a thorough understanding of the subject. The presentation of relativistic wave equations and their symmetries, and the fundamentals of quantum field theory lay the foundations for advanced studies in solid-state physics, nuclear, and elementary particle physics. The authors earlier book, Quantum Mechanics, was praised for its unsurpassed clarity.
## Probing the Mass Degeneracy of Particles with Different Spins*Supported by National Natural Science Foundation of China (11347124, 11147003, U1204115), Doctoral Scientific Research Foundation of USC, and Innovation Team of Nuclear and Particle Physics of USC.

Abstract: The spin is an important property of a particle. Although it is unlikely, there is still a possibility that two particles with different spins share similar masses. In this paper, we propose a method to probe this kind of mass degeneracy of particles with different spins. We use the cascade decay B + →X(3872)K +, X(3872)→D + D − to illustrate our method. It can be seen that the possible mass degeneracy of X(3872) can lead to interesting behavior in the corresponding cascade decay.

Just another PDF Download site

Science

Nuclear physics

Science

Science

Nuclear energy

Nuclear physics

Science

Nuclear physics

Science

Science

Science

Science

Science

Science

Science