Science

Fundamentals of Statistical and Thermal Physics

Author: F. Reif

Publisher: Waveland Press

ISBN:

Category: Science

Page: 651

View: 706

All macroscopic systems consist ultimately of atoms obeying the laws of quantum mechanics. That premise forms the basis for this comprehensive text, intended for a first upper-level course in statistical and thermal physics. Reif emphasizes that the combination of microscopic concepts with some statistical postulates leads readily to conclusions on a purely macroscopic level. The authors writing style and penchant for description energize interest in condensed matter physics as well as provide a conceptual grounding with information that is crystal clear and memorable. Reif first introduces basic probability concepts and statistical methods used throughout all of physics. Statistical ideas are then applied to systems of particles in equilibrium to enhance an understanding of the basic notions of statistical mechanics, from which derive the purely macroscopic general statements of thermodynamics. Next, he turns to the more complicated equilibrium situations, such as phase transformations and quantum gases, before discussing nonequilibrium situations in which he treats transport theory and dilute gases at varying levels of sophistication. In the last chapter, he addresses some general questions involving irreversible processes and fluctuations. A large amount of material is presented to facilitate students later access to more advanced works, to allow those with higher levels of curiosity to read beyond the minimum given on a topic, and to enhance understanding by presenting several ways of looking at a particular question. Formatting within the text either signals material that instructors can assign at their own discretion or highlights important results for easy reference to them. Additionally, by solving many of the 230 problems contained in the text, students activate and embed their knowledge of the subject matter.
Science

Statistical and Thermal Physics

Author: M.D. Sturge

Publisher: CRC Press

ISBN:

Category: Science

Page: 480

View: 796

This book is based on many years of teaching statistical and thermal physics. It assumes no previous knowledge of thermodynamics, kinetic theory, or probability---the only prerequisites are an elementary knowledge of classical and modern physics, and of multivariable calculus. The first half of the book introduces the subject inductively but rigorously, proceeding from the concrete and specific to the abstract and general. In clear physical language the book explains the key concepts, such as temperature, heat, entropy, free energy, chemical potential, and distributions, both classical and quantum. The second half of the book applies these concepts to a wide variety of phenomena, including perfect gases, heat engines, and transport processes. Each chapter contains fully worked examples and real-world problems drawn from physics, astronomy, biology, chemistry, electronics, and mechanical engineering.
Science

Elementary Statistical Physics

Author: Charles Kittel

Publisher: Courier Corporation

ISBN:

Category: Science

Page: 240

View: 623

Graduate-level text covers properties of the Fermi-Dirac and Bose-Einstein distributions; the interrelated subjects of fluctuations, thermal noise, and Brownian movement; and the thermodynamics of irreversible processes. 1958 edition.
Science

Fundamentals of Statistical Mechanics

Author: John D Walecka

Publisher: World Scientific Publishing Company

ISBN:

Category: Science

Page: 316

View: 151

The 1952 Nobel physics laureate Felix Bloch (1905-83) was one of the titans of twentieth-century physics. He laid the fundamentals for the theory of solids and has been called the “father of solid-state physics.” His numerous, valuable contributions include the theory of magnetism, measurement of the magnetic moment of the neutron, nuclear magnetic resonance, and the infrared problem in quantum electrodynamics. Statistical mechanics is a crucial subject which explores the understanding of the physical behaviour of many-body systems that create the world around us. Bloch's first-year graduate course at Stanford University was the highlight for several generations of students. Upon his retirement, he worked on a book based on the course. Unfortunately, at the time of his death, the writing was incomplete. This book has been prepared by Professor John Dirk Walecka from Bloch's unfinished masterpiece. It also includes three sets of Bloch's handwritten lecture notes (dating from 1949, 1969 and 1976), and details of lecture notes taken in 1976 by Brian Serot, who gave an invaluable opinion of the course from a student's perspective. All of Bloch's problem sets, some dating back to 1933, have been included. The book is accessible to anyone in the physical sciences at the advanced undergraduate level or the first-year graduate level.
Science

Fundamentals of Turbulent and Multiphase Combustion

Author: Kenneth Kuan-yun Kuo

Publisher: John Wiley & Sons

ISBN:

Category: Science

Page: 912

View: 919

Detailed coverage of advanced combustion topics from the authorof Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flowshave become major research topics in recent decades due to theirapplication across diverse fields, including energy, environment,propulsion, transportation, industrial safety, and nanotechnology.Most of the knowledge accumulated from this research has never beenpublished in book form—until now. Fundamentals of Turbulentand Multiphase Combustion presents up-to-date, integrated coverageof the fundamentals of turbulence, combustion, and multiphasephenomena along with useful experimental techniques, includingnon-intrusive, laser-based measurement techniques, providing a firmbackground in both contemporary and classical approaches. Beginningwith two full chapters on laminar premixed and non-premixed flames,this book takes a multiphase approach, beginning with more commontopics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and MultiphaseCombustion: Addresses seven basic topical areas in combustion and multiphaseflows, including laminar premixed and non-premixed flames, theoryof turbulence, turbulent premixed and non-premixed flames, andmultiphase flows Covers spray atomization and combustion, solid-propellantcombustion, homogeneous propellants, nitramines, reactingboundary-layer flows, single energetic particle combustion, andgranular bed combustion Provides experimental setups and results wheneverappropriate Supported with a large number of examples and problems as wellas a solutions manual, Fundamentals of Turbulent and MultiphaseCombustion is an important resource for professional engineers andresearchers as well as graduate students in mechanical, chemical,and aerospace engineering.
Statistical physics

Sturge's Statistical and Thermal Physics, Second Edition

Author: Jeffrey Olafsen

Publisher: CRC Press

ISBN:

Category: Statistical physics

Page: 412

View: 515

This fully revised and updated edition provides a uniquely accessible introduction to the principles and applications of statistical mechanics and thermodynamics. Based on the highly acclaimed text by famous physicist M.D. Sturge, it continues its emphasis on explaining concepts with simple mathematics and plain English, as well as consistent use of terminology and notation. The new edition includes a chapter on non-equilibrium thermodynamics and many new examples from soft condensed matter physics. Additionally, chapters have been reorganized for better flow.
Science

Quantum Statistical Theory of Superconductivity

Author: S. Fujita

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 338

View: 787

In this text, Shigeji Fujita and Salvador Godoy guide first and second-year graduate students through the essential aspects of superconductivity. The authors open with five preparatory chapters thoroughly reviewing a number of advanced physical concepts-such as free-electron model of a metal, theory of lattice vibrations, and Bloch electrons. The remaining chapters deal with the theory of superconductivity-describing the basic properties of type I, type II compound, and high-Tc superconductors as well as treating quasi-particles using Heisenberg's equation of motion. The book includes step-by-step derivations of mathematical formulas, sample problems, and illustrations.
Science

Statistical and Thermal Physics

Author: Michael J.R. Hoch

Publisher: CRC Press

ISBN:

Category: Science

Page: 450

View: 730

Concepts and relationships in thermal and statistical physics form the foundation for describing systems consisting of macroscopically large numbers of particles. Developing microscopic statistical physics and macroscopic classical thermodynamic descriptions in tandem, Statistical and Thermal Physics: An Introduction provides insight into basic concepts at an advanced undergraduate level. Highly detailed and profoundly thorough, this comprehensive introduction includes exercises within the text as well as end-of-chapter problems. The first section of the book covers the basics of equilibrium thermodynamics and introduces the concepts of temperature, internal energy, and entropy using ideal gases and ideal paramagnets as models. The chemical potential is defined and the three thermodynamic potentials are discussed with use of Legendre transforms. The second section presents a complementary microscopic approach to entropy and temperature, with the general expression for entropy given in terms of the number of accessible microstates in the fixed energy, microcanonical ensemble. The third section emphasizes the power of thermodynamics in the description of processes in gases and condensed matter. Phase transitions and critical phenomena are discussed phenomenologically. In the second half of the text, the fourth section briefly introduces probability theory and mean values and compares three statistical ensembles. With a focus on quantum statistics, the fifth section reviews the quantum distribution functions. Ideal Fermi and Bose gases are considered in separate chapters, followed by a discussion of the "Planck" gas for photons and phonons. The sixth section deals with ideal classical gases and explores nonideal gases and spin systems using various approximations. The final section covers special topics, specifically the density matrix, chemical reactions, and irreversible thermodynamics.