Science

GNSS Seismogeodesy

Author: Jianghui Geng

Publisher: Elsevier

ISBN:

Category: Science

Page: 320

View: 612

GNSS Seismogeodesy: Theory and Applications combines GNSS and seismology theory and applications to offer both disciplines the background information needed to combine forces. It explores the opportunities for integrating GNSS and seismometers, as well as applications for earthquake and tsunami early warning applications. It allows seismologists to better understand how GNSS positions are computed and how they can be combined with seismic data and allows geodesists to better understand how to apply GNSS to monitoring of crustal motion. GNSS Seismogeodesy is a valuable reference for researchers and students studying the interdisciplinary connection between GNSS geodesy and strong-motion seismology, as well as working on new approaches for monitoring and predicting geologic hazards. Bridges the gap for geodesists and seismologists to better understand how their fields can be complementary Offers an interdisciplinary approach to GNSS geodesy and strong-motion seismology, showing how high-precision GNSS positions can be combined with seismic data Covers the applications of seismogeodesy to earthquake early warning (EEW) and tsunami early warning (TEW) Includes algorithms and source code examples, as well as links to open source software and data sets
Science

Position, Navigation, and Timing Technologies in the 21st Century, Volumes 1 and 2

Author: Y. Jade Morton

Publisher: John Wiley & Sons

ISBN:

Category: Science

Page: 2064

View: 274

Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com
Science

Remote Sensing in Applied Geophysics

Author: Chiara Colombero

Publisher: MDPI

ISBN:

Category: Science

Page: 318

View: 716

The Special Issue is focused on recent and upcoming advances in the combined application of remote sensing and applied geophysics. Applied geophysics analyzes the distribution of physical properties in the subsurface for a wide range of geological, engineering, and environmental applications at different scales. Seismic, electrical, magnetic, and electromagnetic methods are among the most applied and well-established geophysical techniques. These methods share the advantages of being non-invasive and exploring wide areas of investigation with respect to conventional methods (e.g., drilling). Geophysical surveys are usually carried out deploying or moving the appropriate instrumentation directly on the ground surface. However, recent technological advances have resulting in the development of innovative acquisition systems becoming more typical of the remote sensing community (e.g., airborne surveys). While applied geophysics mainly focuses on the subsurface, typical remote sensing techniques have the ability to accurately image the Earth’s surface with high-resolution investigations carried out by means of terrestrial, airborne, or satellite-based platforms. The integration of surface and subsurface information is often crucial for several purposes, including the processing of geophysical data, the characterization and time-lapse monitoring of surface and near-surface targets, and the reconstruction of highly detailed and comprehensive 3D models of the investigated areas. Recent contributions showing the added value of surface reconstruction and/or monitoring in the processing, interpretation, and cross-comparison of geophysical techniques for archaeological, environmental, and engineering studies are collected in this book. Pioneering geophysical acquisitions by means of innovative remote systems are also presented.
Science

International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH)

Author: Manabu Hashimoto

Publisher: Springer

ISBN:

Category: Science

Page: 168

View: 122

These proceedings contain a selection of peer-reviewed papers presented at the International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH), Matsushima, Japan, 22-26 July, 2014. The scientific sessions focused on monitoring temporal and spatial changes in Earth's lithosphere and atmosphere using geodetic satellite systems, high rate GNSS as well as high resolution imaging (InSAR, Lidar). Researchers in various fields of geodesy discussed the role of geodesy in disaster mitigation and how groups with different techniques can collaborate toward such a goal.