P-adic Analysis Compared with Real

Author: Svetlana Katok

Publisher: American Mathematical Soc.


Category: Mathematics

Page: 152

View: 784

The book gives an introduction to $p$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. In addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and $p$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of $p$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.
Functional analysis

Advances in Ultrametric Analysis

Author: Alain Escassut

Publisher: American Mathematical Soc.


Category: Functional analysis

Page: 290

View: 522

Articles included in this book feature recent developments in various areas of non-Archimedean analysis: summation of -adic series, rational maps on the projective line over , non-Archimedean Hahn-Banach theorems, ultrametric Calkin algebras, -modules with a convex base, non-compact Trace class operators and Schatten-class operators in -adic Hilbert spaces, algebras of strictly differentiable functions, inverse function theorem and mean value theorem in Levi-Civita fields, ultrametric spectra of commutative non-unital Banach rings, classes of non-Archimedean Köthe spaces, -adic Nevanlinna theory and applications, and sub-coordinate representation of -adic functions. Moreover, a paper on the history of -adic analysis with a comparative summary of non-Archimedean fields is presented. Through a combination of new research articles and a survey paper, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.

Mathematical Sciences with Multidisciplinary Applications

Author: Bourama Toni

Publisher: Springer


Category: Mathematics

Page: 641

View: 681

This book is the fourth in a multidisciplinary series which brings together leading researchers in the STEAM-H disciplines (Science, Technology, Engineering, Agriculture, Mathematics and Health) to present their perspective on advances in their own specific fields, and to generate a genuinely interdisciplinary collaboration that transcends parochial subject-matter boundaries. All contributions are carefully edited, peer-reviewed, reasonably self-contained, and pedagogically crafted for a multidisciplinary readership. Contributions are drawn from a variety of fields including mathematics, statistics, game theory and behavioral sciences, biomathematics and physical chemistry, computer science and human-centered computing. This volume is dedicated to Professor Christiane Rousseau, whose work inspires the STEAM-H series, in recognition of her passion for the mathematical sciences and her on-going initiative, the Mathematics of Planet Earth paradigm of interdisciplinarity. The volume's primary goal is to enhance interdisciplinary understanding between these areas of research by showing how new advances in a particular field can be relevant to open problems in another and how many disciplines contribute to a better understanding of relevant issues at the interface of mathematics and the sciences. The main emphasis is on important methods, research directions and applications of analysis within and beyond each field. As such, the volume aims to foster student interest and participation in the STEAM-H domain, as well as promote interdisciplinary research collaborations. The volume is valuable as a reference of choice and a source of inspiration for a broad spectrum of scientists, mathematicians, research students and postdoctoral fellows.

Problems and Solutions in Real Analysis

Author: Masayoshi Hata

Publisher: World Scientific Publishing Company


Category: Mathematics

Page: 376

View: 568

This second edition introduces an additional set of new mathematical problems with their detailed solutions in real analysis. It also provides numerous improved solutions to the existing problems from the previous edition, and includes very useful tips and skills for the readers to master successfully. There are three more chapters that expand further on the topics of Bernoulli numbers, differential equations and metric spaces. Each chapter has a summary of basic points, in which some fundamental definitions and results are prepared. This also contains many brief historical comments for some significant mathematical results in real analysis together with many references. Problems and Solutions in Real Analysis can be treated as a collection of advanced exercises by undergraduate students during or after their courses of calculus and linear algebra. It is also instructive for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the Prime Number Theorem through several exercises. This volume is also suitable for non-experts who wish to understand mathematical analysis. Request Inspection Copy Contents:Sequences and LimitsInfinite SeriesContinuous FunctionsDifferentiationIntegrationImproper IntegralsSeries of FunctionsApproximation by PolynomialsConvex FunctionsVarious Proof ζ(2) = π2/6Functions of Several VariablesUniform DistributionRademacher FunctionsLegendre PolynomialsChebyshev PolynomialsGamma FunctionPrime Number TheoremBernoulli NumbersMetric SpacesDifferential Equations Readership: Undergraduates and graduate students in mathematical analysis.

From Groups to Geometry and Back

Author: Vaughn Climenhaga

Publisher: American Mathematical Soc.


Category: Geometry

Page: 420

View: 285

Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering spaces and deck transformations. In the other direction, Cayley graphs, planar models, and fundamental domains appear as geometric objects associated to groups. The final chapter discusses groups themselves as geometric objects, including a gentle introduction to Gromov's theorem on polynomial growth and Grigorchuk's example of intermediate growth. The book is accessible to undergraduate students (and anyone else) with a background in calculus, linear algebra, and basic real analysis, including topological notions of convergence and connectedness. This book is a result of the MASS course in algebra at Penn State University in the fall semester of 2009.

Ultrametric Calculus

Author: W. H. Schikhof

Publisher: Cambridge University Press


Category: Mathematics

Page: 320

View: 529

This is an introduction to p-adic analysis which is elementary yet complete and which displays the variety of applications of the subject. Dr Schikhof is able to point out and explain how p-adic and 'real' analysis differ. This approach guarantees the reader quickly becomes acquainted with this equally 'real' analysis and appreciates its relevance. The reader's understanding is enhanced and deepened by the large number of exercises included throughout; these both test the reader's grasp and extend the text in interesting directions. As a consequence, this book will become a standard reference for professionals (especially in p-adic analysis, number theory and algebraic geometry) and will be welcomed as a textbook for advanced students of mathematics familiar with algebra and analysis.

Real Mathematical Analysis

Author: Charles C. Pugh

Publisher: Springer Science & Business Media


Category: Mathematics

Page: 440

View: 620

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.
Academic libraries





Category: Academic libraries


View: 535