Fiction

The Neutrino Effect

Author: Michael E. Kirshteyn

Publisher: iUniverse

ISBN:

Category: Fiction

Page: 368

View: 915

In a tumultuous future you may live to see, in a world poised on the brink of an uneasy peace, there will come a time of great discovery. One man's vision of a united earth will collide head-on with the ideals of a civilization so advanced that language has become nearly obsolete and conflict has evolved far beyond the simplicities of weapons and war. In this cataclysmic twilight moment in history, the peoples of our planet must band together towards a higher purpose or be destroyed by the machinations of our own short-sightedness.This is the first exciting adventure of Vladimir Ustinov and his team of scientists and philosophers, as they blaze the way for humankind's seminal encounter with The World Builders, an alien race whose nobility and cunning is matched only by their incredible achievements in the manipulation of physics. As Ustinov and his trusted companions Xan Huxley, Harry Northrop and General Jake Vicobs open the door to our first glimpse into a vast universe filled with overwhelming wonder and terrifying evil, they will discover that the ultimate equation is something far more complex than any of them could have imagined. An equation that will reach across time and space to teach new lessons, build new empires, and destroy the final barrier between man and alien. Humanity.

Flavor Oscillations With Sterile Neutrinosand In Dense Neutrino Environments

Author: David Hollander

Publisher:

ISBN:

Category:

Page:

View: 134

Many experiments have provided evidence for neutrino flavor oscillations, and consequently that neutrinos are in fact massive which is not predicted by the Standard Model. Many experiments have been built to constrain the parameters which determine flavor oscillations, and for only three flavors of neutrinos the mixing parameters are well known, aside from the CP violating phase for two mass hierarchies. Most experimental data can be well explained by mixing between three flavors of neutrinos, however oscillation anomalies from several experiments, most notably from LSND (Liquid Scintillator Neutrino Detector) have suggested that there may be additional flavors of neutrinos beyond those in the Standard Model. One of the focuses of this dissertation is the possibility of adding new flavors of right-handed neutrinos to the Standard Model to account for oscillation anomalies, and exploring the consequences of sterile neutrinos for other experiments.Sensitivities to a particular model of sterile neutrinos at the future Long-Baseline Neutrino Experiment will be determined, in which CP effects introduced by the sterile neutrinos play an important role. It will be demonstrated how, by combining data from the Long-Baseline Neutrino Experiment along with data from Daya Bay and T2K, it is possible to provide evidence for or rule out this model of sterile neutrinos.A chi-squared analysis is used to determine the significance of measuring the effects of sterile neutrinos in IceCube; it will be shown that it may be possible to extract evidence for sterile neutrinos from high energy atmospheric neutrinos in IceCube. Furthermore it will be demonstrated how measuring neutrino flavor ratios from astrophysical sources in IceCube can help to distinguish between the three flavor scenario and a beyond the Standard Model (BSM) scenario involving sterile neutrinos. Measuring astrophysical as well as atmospheric neutrinos can evince the existence of sterile neutrinos.Despite the fact that the mixing parameters for the three Standard Model neutrino flavors are well known, some implications of neutrino interactions for flavor oscillations are not well understood. Neutrinos can interact with one another in a similar way to how neutrinos interact with normal matter. Neutrino-neutrino forward scattering can lead to a flavor swap for the propagating neutrino, or the propagating neutrino can retain its original flavor. These interactions contribute an effective potential to the Hamiltonian describing the flavor evolution which depends on a background neutrino density. In normal matter the neutrino density is very low which allows for neutrino-neutrino interactions to be ignored, however these interactions can dominate over vacuum and normal matter interactions in very dense environments such as core-collapse supernovae and early universe scenarios.Neutrino-neutrino interactions give rise to terms quadratic in neutrino densities in the equations of motion, and can give rise to what is called collective oscillations resulting from interference with vacuum and normal matter effects. The non-linearity has made the problem of solving for collective oscillations analytically intractable without simplifying assumptions, and has made this a problem relegated to supercomputer simulations. This dissertation is concerned with analytic methods for solving the equations of motion for core-collapse neutrino propagation. It will be shown here that, by keeping only $\nu\nu$-interactions at initial distances outward from the supernova core, it is possible to solve the equations of motion by factorizing vacuum oscillations and the effects of $\nu\nu$-interactions. Furthermore, it will be shown how using this factorization scheme it is possible to predict where flavor oscillations become unstable. This is an important development because it can allow one to predict the neutrino flux in Earth experiments from core-collapse supernovae, while at the same time gaining an understanding of the underlying physics involved in complicated processes such as collective oscillations and the rapid growth of oscillations at medium range distances. Using the factorization ansatz together with a measured supernova spectrum it is possible in principle to determine the thermal spectra inside of the supernova.
Science

Are There Really Neutrinos?

Author: Allan D. Franklin

Publisher: CRC Press

ISBN:

Category: Science

Page: 384

View: 566

This book discusses how the physics community came to know so much about the neutrino. It is designed to examine the history of the neutrino from its unsuspected beginnings in the discovery of radioactivity at the end of the nineteenth century to current experiments on the mass of the neutrino.

Identifying Muons for Neutrino Oscillation and Cross Section Experiments

Author: Jasmine Star Yuko Ma Ratchford

Publisher:

ISBN:

Category:

Page: 582

View: 202

Neutrinos (v) are interesting for many reasons; they are the only fundamental fermions which are electrically neutral; their mass is orders of magnitude smaller than the lightest charged lepton, the electron; and their solely weak interactions make them an excellent probe of the weak nuclear force. However, one of the most interesting aspects of neutrinos is that, unlike their charged lepton partners, neutrino mass and flavor eigenstates are not the same. All leptons possess 'lepton flavor', a property which is conserved in neutrino interactions. However, because of the difference in the mass and weak eigenstates of neutrinos, a quantum-interference effect is seen in the time evolution of neutrinos. This results in energy and distance dependent oscillations of the neutrino's lepton flavor called 'neutrino oscillations'. The MINOS experiment (Main Injector Neutrino Oscillation Search) was designed to measure the neutrino oscillation parameters, [Delta]m232 and sin2(2[theta]32). MINOS is composed of two detectors located on a 'beam' of v[subscript mu]s. The MINOS Near Detector is located at Fermilab, and the Far Detector is located at the Soudan Mine in Minnesota, 734 km after the Near Detector. The MINERvA experiment (Main Injector Neutrino Experiment for v - A) is a neutrino experiment placed directly in front of the MINOS Near Detector. MINERvA's goal is to make precision measurements of neutrino cross sections. This will help with uncertainties in oscillation measurements, such as MINOS' at low energy. Although lepton flavor is conserved in neutrino interactions, the final state lepton can be a charged lepton ('charged current' interactions) or a neutrino ('neutral current' interactions) of a particular flavor. The identification of charged current v[subscript mu] interactions through the identification of a muon in the final state is a critical component to both neutrino oscillation and cross section measurements; neutral current events are a background to the oscillation signal because the properties of the incoming neutrino cannot be determined. Such identification is particularly difficult and important for low-energy neutrino events. In this thesis, we will discuss improvements to the MINOS charged current identification at low energies, studies to estimate the effect of the neutral current background on the measurement of the oscillation parameters, and the aspects of muon identification which are similar for the MINOS and MINERvA experiments. In 2010, the MINOS experiment released a measurement of the oscillation parameters based on 7.32x1020POT. The results were [Delta]m232 = 2.320̇12[subscript 0.08] x 103eV2, and sin2(2[theta]32)> 0.90(90%, C.L.). This is the best measurement of the oscillation parameter, [Delta]m232, and a competitive measurement of sin2(2[theta]32). The improvements to the charged current event selection helped MINOS observe a complete oscillation in neutrino energy.
Science

Neutrino Physics, Second Edition

Author: Kai Zuber

Publisher: CRC Press

ISBN:

Category: Science

Page: 466

View: 232

When Kai Zuber’s pioneering text on neutrinos was published in 2003, the author correctly predicted that the field would see tremendous growth in the immediate future. In that book, Professor Zuber provided a comprehensive self-contained examination of neutrinos, covering their research history and theory, as well as their application to particle physics, astrophysics, nuclear physics, and the broad reach of cosmology; but now to be truly comprehensive and accurate, the field’s seminal reference needs to be revised and expanded to include the latest research, conclusions, and implications. Revised as needed to be equal to the research of today, Neutrino Physics, Second Edition delves into neutrino cross sections, mass measurements, double beta decay, solar neutrinos, neutrinos from supernovae, and high energy neutrinos, as well as new experimental results in the context of theoretical models. It also provides entirely new discussion on: Resolution of the solar neutrino problem The first real-time measurement of solar neutrinos below 1 MeV Geoneutrinos Long baseline accelerator experiments Written to be accessible to readers from diverse backgrounds, this edition, like the first, provides both an introduction to the field as well as the information needed by those looking to make their own contribution to it. And like the first edition, it whets the researcher’s appetite, going beyond certainty to pose those questions that still need answers.
Science

Physics and Astrophysics of Neutrinos

Author: Masataka Fukugita

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 934

View: 355

Observations of neutrinos being emitted by the supernova SN1987A, star neutrinos, and atmospheric neutrinos have provided new insights into astronomy, as well as new unresolved phenomena such as the solar neutrino problem, spurring investigative studies among particle physicists and astrophysicists. One of the most important features of this book is its enumeration of a number of basic properties of neutrinos and their relationship to Grand Unified Theories, focusing on the origin of the neutrino's mass and the generation mixing of neutrinos. All the kamiokande results, detector performances, and complete references are included.
Science

Neutrino Physics

Author: Kai Zuber

Publisher: CRC Press

ISBN:

Category: Science

Page: 454

View: 180

Neutrino physics remains one of the most exciting fields of fundamental physics today. The neutrino's position at the intersection of particle physics, astrophysics, and nuclear physics ensures continuing interest in the subject. Major activities at accelerators like Fermilab, KEK and CERN, in addition to underground facilities like Gran Sasso, Kamioka and Sudbury, continue to enhance our understanding of the origins and properties of neutrinos, and their implications for the Standard Model and cosmology. Neutrino Physics provides an up to date and comprehensive introduction to the subject as well as an invaluable resource for researchers in physics and astrophysics. Starting with a brief historical overview the author proceeds to review fundamental neutrino properties, the neutrino mass question, and their place within and beyond the Standard Model. The final chapters examine the role of neutrinos in modern astroparticle physics, cosmology and the dark matter problem. The book concludes with a summary of the current status of neutrino physics and the implications of recent results. Written to be accessible to readers from different backgrounds in nuclear, particle or astrophysics and with a detailed reference list, this title will be essential for any researcher or advanced student who needs to understand modern neutrino physics.

Identifying Muons for Neutrino Oscillation and Cross Section Experiments

Author:

Publisher:

ISBN:

Category:

Page: 310

View: 466

Neutrinos ($\nu$) are interesting for many reasons; they are the only fundamental fermions which are electrically neutral; their mass is orders of magnitude smaller than the lightest charged lepton, the electron; and their solely weak interactions make them an excellent probe of the weak nuclear force. However, one of the most interesting aspects of neutrinos is that, unlike their charged lepton partners, neutrino mass and flavor eigenstates are not the same. All leptons possess 'lepton flavor', a property which is conserved in neutrino interactions. However, because of the difference in the mass and weak eigenstates of neutrinos, a quantum-interference effect is seen in the time evolution of neutrinos. This results in energy and distance dependent oscillations of the neutrino's lepton flavor called 'neutrino oscillations'. The MINOS experiment (Main Injector Neutrino Oscillation Search) was designed to measure the neutrino oscillation parameters, $\Delta m2̂_{32}$ and $sin2̂(2\theta_{32})$. MINOS is composed of two detectors located on a 'beam' of v[subscript mu]s. The MINOS Near Detector is located at Fermilab, and the Far Detector is located at the Soudan Mine in Minnesota, 734 km after the Near Detector. The MINER$\nu$A experiment (Main Injector Neutrino Experiment for $\nu$ - A) is a neutrino experiment placed directly in front of the MINOS Near Detector. MINER$\nu$s goal is to make precision measurements of neutrino cross sections. This will help with uncertainties in oscillation measurements, such as MINOS' at low energy. Although lepton flavor is conserved in neutrino interactions, the final state lepton can be a charged lepton ('charged current' interactions) or a neutrino ('neutral current' interactions) of a particular flavor. The identification of charged current $\nu_\mu$ interactions through the identification of a muon in the final state is a critical component to both neutrino oscillation and cross section measurements; neutral current events are a background to the oscillation signal bec! ause the properties of the incoming neutrino cannot be determined. Such identification is particularly difficult and important for low-energy neutrino events. In this thesis, we will discuss improvements to the MINOS charged current identification at low energies, studies to estimate the effect of the neutral current background on the measurement of the oscillation parameters, and the aspects of muon identification which are similar for the MINOS and MINER$\nu$A experiments. In 2010, the MINOS experiment released a measurement of the oscillation parameters based on $7.32x10{̂20}$ POT. The results were $\Delta m2̂_{32} = 2.32{̂+.012}_{-0.08} x 103̂ eV2̂$, and $sin2̂(2\theta_{32}) > 0.90(90%,C.L.)$. This is the best measurement of the oscillation parameter, $\Delta m2̂_{32}$, and a competitive measurement of $sin2̂(2\theta_{32})$. The improvements to the charged current event selection helped MINOS observe a complete oscillation in neutrino energy.
Science

Measurements of Neutrino Mass

Author: Fernando Ferroni

Publisher: IOS Press

ISBN:

Category: Science

Page: 459

View: 512

This volume offers a valuable insight into various aspects of the ongoing work directed at measuring neutrino mass. It took twenty years to refute the assertions of Bethe and Peierls that neutrinos were not observable, but it has since been realized that much can be learnt from these particles. The moral is, as Fiorini argues here, that the study of neutrinos was and remains demanding but rewarding. Subjects addressed in this volume include clarifying the meaning of the Klapdor-Kleingrothaus results, probing the Majorana nature of neutrinos, observing lepton number violating effects for the first time, studying the end point of the spectrum in the search for neutrino masses and speculating whether it is possible to measure neutrino masses in cosmology.
Science

Electroweak Processes in External Active Media

Author: Alexander Kuznetsov

Publisher: Springer

ISBN:

Category: Science

Page: 271

View: 752

Expanding on the concept of the authors’ previous book “Electroweak Processes in External Electromagnetic Fields,” this new book systematically describes the investigation methods for the effects of external active media, both strong electromagnetic fields and hot dense plasma, in quantum processes. Solving the solar neutrino puzzle in a unique experiment conducted with the help of the heavy-water detector at the Sudbery Neutrino Observatory, along with another neutrino experiments, brings to the fore electroweak physics in an active external medium. It is effectively demonstrated that processes of neutrino interactions with active media of astrophysical objects may lead, under some physical conditions, to such interesting effects as neutrino-driven shockwave revival in a supernova explosion, a “cherry stone shooting” mechanism for pulsar natal kick, and a neutrino pulsar. It is also shown how poor estimates of particle dispersion in external active media sometimes lead to confusion. The book will appeal to graduate and post-graduate students of theoretical physics with a prior understanding of Quantum Field Theory (QFT) and the Standard Model of Electroweak Interactions, as well as to specialists in QFT who want to know more about the problems of quantum phenomena in hot dense plasma and external electromagnetic fields.

Investigation of Beam Loading Effects for the Neutrino Factory Muon Accelerator

Author:

Publisher:

ISBN:

Category:

Page:

View: 580

The International design study (IDS) study showed that a Neutrino Factory [1] seems to be the most promising candidate for the next phase of high precision neutrino oscillation experiments. One part of the increased precision is due to the fact that in a Neutrino Factory the decay of muons produces a neutrino beam with narrow energy distribution and divergence. The effect of beam loading on the energy distribution of the muon beam in the Neutrino Factory decay rings has been investigated numerically. The simulations have been performed using the baseline accelerator design including cavities for different number of bunch trains and bunch train timing. A detailed analysis of the beam energy distribution expected is given together with a discussion of the energy spread produced by the gutter acceleration in the FFAG and the implications for the neutrino oscillation experiments will be presented.

A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors

Author:

Publisher:

ISBN:

Category:

Page:

View: 216

The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here we present the Cosmic Ray Tagger (CRT) system, a novel technique to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction.
Science

Neutrino Physics and Astrophysics

Author: Y. Suzuki

Publisher: Elsevier

ISBN:

Category: Science

Page: 546

View: 923

The scientific program of these important proceedings was arranged to cover most of the field of neutrino physics. In light of the rapid growth of interest stimulated by new interesting results from the field, more than half of the papers presented here are related to the neutrino mass and oscillations, including atmospheric and solar neutrino studies. Neutrino mass and oscillations could imply the existence of a mass scale many orders of magnitudes higher than presented in current physics and will probably guide scientists beyond the standard model of particle physics.
Science

First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nuclear Deep Inelastic Scattering at MINERvA

Author: Joel Allen Mousseau

Publisher: Springer

ISBN:

Category: Science

Page: 147

View: 872

This thesis details significant improvements in the understanding of the nuclear EMC effect and nuclear shadowing in neutrino physics, and makes substantial comparisons with electron scattering physics. Specifically, it includes the first systematic study of the EMC ratios of carbon, iron and lead to plastic scintillator of neutrinos. The analysis presented provides the best evidence to date that the EMC effect is similar between electrons and neutrinos within the sensitivity of the data. Nuclear shadowing is measured systematically for the first time with neutrinos. In contrast with the data on the EMC effect, the data on nuclear shadowing support the conclusion that nuclear shadowing may be stronger for neutrinos than it is for electrons. This conclusion points to interesting new nuclear physics.

Interim Design Report for the International Design Study for a Neutrino Factory

Author:

Publisher:

ISBN:

Category:

Page: 272

View: 304

The starting point for the International Design Study for the Neutrino Factory (the IDS-NF) was the output of the earlier International Scoping Study for a future Neutrino Factory and super-beam facility (the ISS). The accelerator facility described in section 2 incorporates the improvements that have been derived from the substantial amount of work carried out within the Accelerator Working Group. Highlights of these improvements include: (1) Initial concepts for the implementation of the proton driver at each of the three example sites, CERN, FNAL, and RAL; (2) Detailed studies of the energy deposition in the target area; (3) A reduction in the length of the muon beam phase-rotation and bunching systems; (4) Detailed analyses of the impact of the risk that stray magnetic field in the accelerating cavities in the ionization cooling channel will reduce the maximum operating gradient. Several alternative ionization-cooling lattices have been developed as fallback options to mitigate this technical risk; (5) Studies of particle loss in the muon front-end and the development of strategies to mitigate the deleterious effects of such losses; (6) The development of more complete designs for the muon linac and re-circulating linacs; (7) The development of a design for the muon FFAG that incorporates insertions for injection and extraction; and (8) Detailed studies of diagnostics in the decay ring. Other sub-systems have undergone a more 'incremental' evolution; an indication that the design of the Neutrino Factory has achieved a degree of maturity. The design of the neutrino detectors described in section 3 has been optimized and the Detector Working Group has made substantial improvements to the simulation and analysis of the Magnetized Iron Neutrino Detector (MIND) resulting in an improvement in the overall neutrino-detection efficiency and a reduction in the neutrino-energy threshold. In addition, initial consideration of the engineering of the MIND has generated a design that is feasible and a finite element analysis of the toroidal magnetic field to produce a realistic field map has been carried out. Section 3 also contains, for the first time, a specification for the near-detector systems and a demonstration that the neutrino flux can be determined with a precision of 1% through measurements of inverse muon decay at the near detector. The performance of the facility, the work of the Physics and Performance Evaluation Group, is described in section 1. The effect of the improved MIND performance is to deliver a discovery reach for CP-invariance violation in the lepton sector, the determination of the mass hierarchy, and of?13 that extends down to values of sin2 2?13 H"5 x 10−5 and is robust against systematic uncertainties. In addition, the improved neutrino-energy threshold has allowed an indicative analysis of the kind of re-optimization of the facility that could be carried out should?13 be found close to the current upper bound. The results presented in section 1 demonstrate that the discovery reach as well as the precision with which the oscillation parameters can be measured at the baseline Neutrino Factory is superior to that of other proposed facilities for all possible values of sin2 2?13.
Science

Spaceship Neutrino

Author: Christine Sutton

Publisher: Cambridge University Press

ISBN:

Category: Science

Page: 244

View: 472

A journey from the heart of matter to the edges of the Universe, about a particle that is almost nothing, and yet can tell us almost everything about the structure of matter and the origin of the Universe.
Science

Neutrino Cosmology

Author: Julien Lesgourgues

Publisher: Cambridge University Press

ISBN:

Category: Science

Page: 378

View: 930

Self-contained guide to the role played by neutrinos in the Universe and how their properties influence cosmological and astrophysical observations.
Science

Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA

Author: Cheryl E. Patrick

Publisher: Springer

ISBN:

Category: Science

Page: 341

View: 101

​This thesis represents the first double differential measurement of quasi-elastic anti-neutrino scattering in the few GeV range--a region of substantial theoretical and experimental interest as it is the kinematic region where studies of charge-parity (CP) violation in the neutrino sector most require precise understanding of the differences between anti-neutrino and neutrino scatter. This dissertation also presents total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which is then compared to measurements from previous experiments. Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure CP violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. The measurement described herewith determines the nuclear and instrumental effects that must be understood to undertake precision neutrino physics. As well as being useful to help reduce oscillation experiments' uncertainty, this data can also be used to study the prevalence of various correlation and final-state interaction effects within the nucleus. In addition to being a substantial scientific advance, this thesis also serves as an outstanding introduction to the field of experimental neutrino physics for future students.