Computers

Understanding Computation

Author: Tom Stuart

Publisher: "O'Reilly Media, Inc."

ISBN:

Category: Computers

Page: 332

View: 134

This book is for programmers who are curious about programming languages and the theory of computation, especially those who don't have a formal background in mathematics or computer science. It's for those who are interested in the mind-expanding parts of computer science that deal with programs, languages, and machines, but are discouraged by the mathematical language that's often used to explain them. Instead of complex notation, the book uses working code to illustrate theoretical ideas and turn them into interactive experiments that readers can explore at their own pace.
Computers

A Computable Universe

Author: Hector Zenil

Publisher: World Scientific

ISBN:

Category: Computers

Page: 856

View: 397

This volume, with a Foreword writer Sir Roger Penrose, discusses the foundations of computation in relation to nature. It focuses on two main questions: What is computation?How does nature compute? The contributors are world-renowned experts who have helped shape a cutting-edge computational understanding of the universe. They discuss computation in the world from a variety of perspectives, ranging from foundational concepts to pragmatic models to ontological conceptions and philosophical implications. The volume provides a state-of-the-art collection of technical papers and non-technical essays, representing a field that assumes information and computation to be key in understanding and explaining the basic structure underpinning physical reality. It also includes a new edition of Konrad Zuse's “Calculating Space” (the MIT translation), and a panel discussion transcription on the topic, featuring worldwide experts in quantum mechanics, physics, cognition, computation and algorithmic complexity. The volume is dedicated to the memory of Alan M Turing — the inventor of universal computation, on the 100th anniversary of his birth, and is part of the Turing Centenary celebrations. Contents:Foreword (R Penrose)PrefaceAcknowledgementsIntroducing the Computable Universe (H Zenil)Historical, Philosophical & Foundational Aspects of Computation:Origins of Digital Computing: Alan Turing, Charles Babbage, & Ada Lovelace (D Swade)Generating, Solving and the Mathematics of Homo Sapiens. E Post's Views on Computation (L De Mol)Machines (R Turner)Effectiveness (N Dershowitz & E Falkovich)Axioms for Computability: Do They Allow a Proof of Church's Thesis? (W Sieg)The Mathematician's Bias — and the Return to Embodied Computation (S B Cooper)Intuitionistic Mathematics and Realizability in the Physical World (A Bauer)What is Computation? Actor Model versus Turing's Model (C Hewitt)Computation in Nature & the Real World:Reaction Systems: A Natural Computing Approach to the Functioning of Living Cells (A Ehrenfeucht, J Kleijn, M Koutny & G Rozenberg)Bacteria, Turing Machines and Hyperbolic Cellular Automata (M Margenstern)Computation and Communication in Unorganized Systems (C Teuscher)The Many Forms of Amorphous Computational Systems (J Wiedermann)Computing on Rings (G J Martínez, A Adamatzky & H V McIntosh)Life as Evolving Software (G J Chaitin)Computability and Algorithmic Complexity in Economics (K V Velupillai & S Zambelli)Blueprint for a Hypercomputer (F A Doria)Computation & Physics & the Physics of Computation:Information-Theoretic Teleodynamics in Natural and Artificial Systems (A F Beavers & C D Harrison)Discrete Theoretical Processes (DTP) (E Fredkin)The Fastest Way of Computing All Universes (J Schmidhuber)The Subjective Computable Universe (M Hutter)What Is Ultimately Possible in Physics? (S Wolfram)Universality, Turing Incompleteness and Observers (K Sutner)Algorithmic Causal Sets for a Computational Spacetime (T Bolognesi)The Computable Universe Hypothesis (M P Szudzik)The Universe is Lawless or “Pantôn chrêmatôn metron anthrôpon einai” (C S Calude, F W Meyerstein & A Salomaa)Is Feasibility in Physics Limited by Fantasy Alone? (C S Calude & K Svozil)The Quantum, Computation & Information:What is Computation? (How) Does Nature Compute? (D Deutsch)The Universe as Quantum Computer (S Lloyd)Quantum Speedup and Temporal Inequalities for Sequential Actions (M Żukowski)The Contextual Computer (A Cabello)A Gödel-Turing Perspective on Quantum States Indistinguishable from Inside (T Breuer)When Humans Do Compute Quantum (P Zizzi)Open Discussion Section:Open Discussion on A Computable Universe (A Bauer, T Bolognesi, A Cabello, C S Calude, L De Mol, F Doria, E Fredkin, C Hewitt, M Hutter, M Margenstern, K Svozil, M Szudzik, C Teuscher, S Wolfram & H Zenil)Live Panel Discussion (transcription):What is Computation? (How) Does Nature Compute? (C S Calude, G J Chaitin, E Fredkin, A J Leggett, R de Ruyter, T Toffoli & S Wolfram)Zuse's Calculating Space:Calculating Space (Rechnender Raum) (K Zuse)Afterword to Konrad Zuse's Calculating Space (A German & H Zenil) Readership: Graduate students who are specialized researchers in computer science, information theory, quantum theory and modern philosophy and the general public who are interested in these subject areas. Keywords:Digital Physics;Computational Universe;Digital Philosophy;Reality Theories of the Universe;Models of the World;Thring Computation RandomnessKey Features:The authors are all prominent researchersNo competing titlesState-of-the-art collection of technical papers and non-technical essays
Business & Economics

Understanding Information and Computation

Author: Philip Tetlow

Publisher: CRC Press

ISBN:

Category: Business & Economics

Page: 408

View: 663

The World Wide Web is truly astounding. It has changed the way we interact, learn and innovate. It is the largest sociotechnical system humankind has created and is advancing at a pace that leaves most in awe. It is an unavoidable fact that the future of the world is now inextricably linked to the future of the Web. Almost every day it appears to change, to get better and increase its hold on us. For all this we are starting to see underlying stability emerge. The way that Web sites rank in terms of popularity, for example, appears to follow laws with which we are familiar. What is fascinating is that these laws were first discovered, not in fields like computer science or information technology, but in what we regard as more fundamental disciplines like biology, physics and mathematics. Consequently the Web, although synthetic at its surface, seems to be quite 'natural' deeper down, and one of the driving aims of the new field of Web Science is to discover how far down such ’naturalness’ goes. If the Web is natural to its core, that raises some fundamental questions. It forces us, for example, to ask if the central properties of the Web might be more elemental than the truths we cling to from our understandings of the physical world. In essence, it demands that we question the very nature of information. Understanding Information and Computation is about such questions and one possible route to potentially mind-blowing answers.
Technology & Engineering

Computation and Visualization for Understanding Dynamics in Geographic Domains

Author: May Yuan

Publisher: CRC Press

ISBN:

Category: Technology & Engineering

Page: 120

View: 666

The world is ever changing, and a comprehensive understanding of the world will not be achieved without theoretical and methodological advances to decode complex dynamics in human and environmental systems. Computation and Visualization for the Understanding of Dynamics in Geographic Domains: A Research Agenda synthesizes key ideas and issues discussed during the UCGIS hosted workshop on computation. It expands upon popular discussions to provide a comprehensive overview of geographic dynamics and new approaches to advance our understanding of geographic dynamics through computation and visualization. The text gives an overview of the state of research and how this research relates to intelligence analysis. It addresses broad issues and challenges in areas, such as spatiotemporal analysis and modeling, spatiotemporal visual analytics; spatiotemporal data mining, spatiotemporal reasoning, and spatiotemporal ontologies. The book also fuses suggestions from workshop participants with literature reviews to propose new research agendas and recommendations for future developments and collaboration. With full coverage on current developments and probably challenges, Computation and Visualization for the Understanding of Dynamics in Geographic Domains: A Research Agenda establishes a foundation to promote further studies in geographic dynamics and provides a springboard for the next big scientific and technological breakthrough.
Automatic control

Information and Computation

Author: Mark Semenovich Burgin

Publisher: World Scientific

ISBN:

Category: Automatic control

Page: 528

View: 336

This volume provides a cutting-edge view of the world's leading authorities in fields where information and computation play a central role.
Computers

Computation and Logic in the Real World

Author: S. Barry Cooper

Publisher: Springer Science & Business Media

ISBN:

Category: Computers

Page: 826

View: 942

CiE2007:ComputationandLogicintheRealWorld Siena,Italy,June18-23,2007 Computability in Europe (CiE) is an informal network of European scientists working on computability theory, including its foundations, technical devel- ment, and applications. Among the aims of the network is to advance our t- oretical understanding of what can and cannot be computed, by any means of computation. Its scienti'c vision is broad: computations may be performed with discrete or continuous data by all kinds of algorithms, programs, and - chines. Computations may be made by experimenting with any sort of physical system obeying the laws of a physical theory such as Newtonian mechanics, quantum theory, or relativity. Computations may be very general, depending upon the foundations of set theory; or very speci'c, using the combinatorics of ?nite structures. CiE also works on subjects intimately related to computation, especially theories of data and information, and methods for formal reasoning about computations. The sources of new ideas and methods include practical developments in areas such as neural networks, quantum computation, natural computation, molecular computation, computational learning. Applications are everywhere,especially, in algebra,analysisand geometry, or data types and p- gramming. Within CiE there is general recognition of the underlying relevance of computability to physics and a broad range of other sciences, providing as it does a basic analysis of the causal structure of dynamical systems.
Computers

Computational Intelligence for Multimedia Understanding

Author: Emanuele Salerno

Publisher: Springer

ISBN:

Category: Computers

Page: 235

View: 822

This book constitutes the refereed proceedings of the International Workshop MUSCLE 2011 on Computational Intelligence for Multimedia Understanding, organized by the ERCIM working group in Pisa, Italy on December 2011. The 18 revised full papers were carefully reviewed and selected from over numerous submissions. The papers cover the following topics: multisensor systems, multimodal analysis, crossmodel data analysis and clustering, mixed-reality applications, activity and object detection and recognition, text and speech recognition, multimedia labelling, semantic annotation, and metadata, multimodal indexing and searching in very large data-bases; and case studies.
Science

Quantum Computation and Quantum Information

Author: Michael A. Nielsen

Publisher: Cambridge University Press

ISBN:

Category: Science

Page:

View: 686

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.
Language Arts & Disciplines

Interpretation and Understanding

Author: Marcelo Dascal

Publisher: John Benjamins Publishing

ISBN:

Category: Language Arts & Disciplines

Page: 714

View: 474

Our species has been searching for meaning throughout its evolutionary development. For us to understand one another, we must embark on a complex interpretative process. The aim of this text is to provide a theory of understanding and interpretation to clarify this communicative process.
Mathematics

New Directions in Logic, Language, and Computation

Author: Daniel Lassiter

Publisher: Springer

ISBN:

Category: Mathematics

Page: 250

View: 964

The European Summer School in Logic, Language and Information (ESSLLI) is organized every year by the Association for Logic, Language and Information (FoLLI) in different sites around Europe. The main focus of ESSLLI is on the interface between linguistics, logic and computation. ESSLLI offers foundational, introductory and advanced courses, as well as workshops, covering a wide variety of topics within the three areas of interest: Language and Computation, Language and Logic, and Logic and Computation. During two weeks, around 50 courses and 10 workshops are offered to the attendants, each of 1.5 hours per day during a five days week, with up to seven parallel sessions. ESSLLI also includes a student session (papers and posters by students only, 1.5 hour per day during the two weeks) and four evening lectures by senior scientists in the covered areas. The 15 revised full papers presented were carefully reviewed and selected. The papers are organized in topical sections on The papers are organized in topical sections on language and computation; logic and computation; and logic and language.
Medical

Understanding Vision

Author: Li Zhaoping

Publisher: OUP Oxford

ISBN:

Category: Medical

Page: 400

View: 152

While the field of vision science has grown significantly in the past three decades, there have been few comprehensive books that showed readers how to adopt a computional approach to understanding visual perception, along with the underlying mechanisms in the brain. Understanding Vision explains the computational principles and models of biological visual processing, and in particular, of primate vision. The book is written in such a way that vision scientists, unfamiliar with mathematical details, should be able to conceptually follow the theoretical principles and their relationship with physiological, anatomical, and psychological observations, without going through the more mathematical pages. For those with a physical science background, especially those from machine vision, this book serves as an analytical introduction to biological vision. It can be used as a textbook or a reference book in a vision course, or a computational neuroscience course for graduate students or advanced undergraduate students. It is also suitable for self-learning by motivated readers. in addition, for those with a focused interest in just one of the topics in the book, it is feasible to read just the chapter on this topic without having read or fully comprehended the other chapters. In particular, Chapter 2 presents a brief overview of experimental observations on biological vision; Chapter 3 is on encoding of visual inputs, Chapter 5 is on visual attentional selection driven by sensory inputs, and Chapter 6 is on visual perception or decoding. Including many examples that clearly illustrate the application of computational principles to experimental observations, Understanding Vision is valuable for students and researchers in computational neuroscience, vision science, machine and computer vision, as well as physicists interested in visual processes.
Medical

Computational Neuroscience

Author: Eric L. Schwartz

Publisher: MIT Press

ISBN:

Category: Medical

Page: 441

View: 835

The thirty original contributions in this book provide a working definition of"computational neuroscience" as the area in which problems lie simultaneously within computerscience and neuroscience. They review this emerging field in historical and philosophical overviewsand in stimulating summaries of recent results. Leading researchers address the structure of thebrain and the computational problems associated with describing and understanding this structure atthe synaptic, neural, map, and system levels.The overview chapters discuss the early days of thefield, provide a philosophical analysis of the problems associated with confusion between brainmetaphor and brain theory, and take up the scope and structure of computationalneuroscience.Synaptic-level structure is addressed in chapters that relate the properties ofdendritic branches, spines, and synapses to the biophysics of computation and provide a connectionbetween real neuron architectures and neural network simulations.The network-level chapters take upthe preattentive perception of 3-D forms, oscillation in neural networks, the neurobiologicalsignificance of new learning models, and the analysis of neural assemblies and local learningrides.Map-level structure is explored in chapters on the bat echolocation system, cat orientationmaps, primate stereo vision cortical cognitive maps, dynamic remapping in primate visual cortex, andcomputer-aided reconstruction of topographic and columnar maps in primates.The system-level chaptersfocus on the oculomotor system VLSI models of early vision, schemas for high-level vision,goal-directed movements, modular learning, effects of applied electric current fields on corticalneural activity neuropsychological studies of brain and mind, and an information-theoretic view ofanalog representation in striate cortex.Eric L. Schwartz is Professor of Brain Research and ResearchProfessor of Computer Science, Courant Institute of Mathematical Sciences, New York UniversityMedical Center. Computational Neuroscience is included in the System Development FoundationBenchmark Series.
Technology & Engineering

The Local Information Dynamics of Distributed Computation in Complex Systems

Author: Joseph T. Lizier

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 236

View: 770

The nature of distributed computation in complex systems has often been described in terms of memory, communication and processing. This thesis presents a complete information-theoretic framework to quantify these operations on information (i.e. information storage, transfer and modification), and in particular their dynamics in space and time. The framework is applied to cellular automata, and delivers important insights into the fundamental nature of distributed computation and the dynamics of complex systems (e.g. that gliders are dominant information transfer agents). Applications to several important network models, including random Boolean networks, suggest that the capability for information storage and coherent transfer are maximised near the critical regime in certain order-chaos phase transitions. Further applications to study and design information structure in the contexts of computational neuroscience and guided self-organisation underline the practical utility of the techniques presented here.
Computers

In Search of Elegance in the Theory and Practice of Computation

Author: Val Tannen

Publisher: Springer

ISBN:

Category: Computers

Page: 569

View: 637

This Festschrift volume, published in honour of Peter Buneman, contains contributions written by some of his colleagues, former students, and friends. In celebration of his distinguished career a colloquium was held in Edinburgh, Scotland, 27-29 October, 2013. The articles presented herein belong to some of the many areas of Peter's research interests.
Language Arts & Disciplines

Understanding Minimalism

Author: Norbert Hornstein

Publisher: Cambridge University Press

ISBN:

Category: Language Arts & Disciplines

Page: 405

View: 280

Understanding Minimalism is a state-of-the-art introduction to the Minimalist Program the current model of syntactic theory within generative linguistics. Accessibly written, it presents the basic principles and techniques of the minimalist program, looking firstly at analyses within Government and Binding Theory (the Minimalist Program s predecessor), and gradually introducing minimalist alternatives. Minimalist models of grammar are presented in a step-by-step fashion, and the ways in which they contrast with GB analyses are clearly explained. Spanning a decade of minimalist thinking, this textbook will enable students to develop a feel for the sorts of questions and problems that minimalism invites, and to master the techniques of minimalist analysis. Over 100 exercises are provided, encouraging them to put these new skills into practice. Understanding Minimalism will be an invaluable text for intermediate and advanced students of syntactic theory, and will set a solid foundation for further study and research within Chomsky s minimalist framework.
Mathematics

GeoComputation

Author: Robert J. Abrahart

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 475

View: 608

A revision of Openshaw and Abrahart's seminal work, GeoComputation, Second Edition retains influences of its originators while also providing updated, state-of-the-art information on changes in the computational environment. In keeping with the field's development, this new edition takes a broader view and provides comprehensive coverage across the
Computers

Physical Computation and Cognitive Science

Author: Nir Fresco

Publisher: Springer Science & Business Media

ISBN:

Category: Computers

Page: 229

View: 854

This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time. "This book provides a thorough and timely analysis of differing accounts of computation while advancing the important role that information plays in understanding computation. Fresco’s two-pronged approach will appeal to philosophically inclined computer scientists who want to better understand common theoretical claims in cognitive science.” Marty J. Wolf, Professor of Computer Science, Bemidji State University “An original and admirably clear discussion of central issues in the foundations of contemporary cognitive science.” Frances Egan, Professor of Philosophy, Rutgers, The State University of New Jersey
Computers

A Computable Universe

Author: Hector Zenil

Publisher: World Scientific

ISBN:

Category: Computers

Page: 810

View: 159

This volume, with a foreword by Sir Roger Penrose, discusses the foundations of computation in relation to nature.It focuses on two main questions: What is computation? How does nature compute?The contributors are world-renowned experts who have helped shape a cutting-edge computational understanding of the universe. They discuss computation in the world from a variety of perspectives, ranging from foundational concepts to pragmatic models to ontological conceptions and philosophical implications.The volume provides a state-of-the-art collection of technical papers and non-technical essays, representing a field that assumes information and computation to be key in understanding and explaining the basic structure underpinning physical reality. It also includes a new edition of Konrad Zuse''s OC Calculating SpaceOCO (the MIT translation), and a panel discussion transcription on the topic, featuring worldwide experts in quantum mechanics, physics, cognition, computation and algorithmic complexity.The volume is dedicated to the memory of Alan M Turing OCo the inventor of universal computation, on the 100th anniversary of his birth, and is part of the Turing Centenary celebrations.